3992
V. Suchaud et al. / Bioorg. Med. Chem. Lett. 22 (2012) 3988–3992
Figure 3. (A): Superimposition of the minimized highest ranked docking solutions of amides 4a (pink),4b (green), 4c (blue), 4d (red), 4e (violet), 4f (yellow) and 4g (orange)
in the HIV-1 RT RNase H catalytic site. The Connolly isosurface is depicted in blue for the most hydrophilic residues to orange for the most hydrophobic residues. The
manganese cofactors are depicted in orange. (B): Putative mode of binding of amide 4a in the RT RNase H catalytic site.
or high protein binding, and the modest inhibitions of the RNase H
function, albeit not solely responsible, indeed represent an impor-
tant limiting factor. Nevertheless, the encouraging hits of RT RNase
H activity on this series of compounds, as well as their selectivity
for the HIV-1 RT RNase H site versus the HIV-1 IN and RT polymer-
ase sites, lay the ground for further improvements, and according
to our docking studies appropriate substitution of the scaffold by
an extended aromatic lipophilic chain might lead to improved
activity. Correlating with our molecular docking output, it can be
noted that the most potent RNase H inhibitors acting in the submi-
cromolar range all bear bi- or tricyclic (possibly condensed) moie-
References and notes
1. De Clercq, E. Curr. Opin. Pharmacol. 2010, 10, 507.
2. Mehellou, Y.; De Clercq, E. J. Med. Chem. 2010, 53, 521.
3. Carr, A.; Amin, J. AIDS 2009, 23, 343.
4. Esté, J. A.; Cihlar, T. Antiviral Res. 2010, 85, 25.
5. Tramontano, E. Mini-Rev. Med. Chem. 2006, 6, 727.
6. Tramontano, E.; Di Santo, R. Curr. Med. Chem. 2010, 17, 2837.
7. Tramontano, E.; Esposito, F.; Badas, R.; Di Santo, R.; Costi, R.; La Colla, P.
Antiviral Res. 2005, 65, 117.
8. Strashnova, B.; Koval, O. V.; Zaitsev, B. E.; Stash, A. I. Russ. J. Coord. Chem. 2008,
34, 783.
9. Duplantier, A. J.; Becker, S. L.; Bohanon, M. J.; Borzilleri, K. A.; Chrunyk, B. A.;
Downs, J. T.; Hu, L. Y.; El-Kattan, A.; James, L. C.; Liu, S.; Lu, J.; Maklad, N.;
Mansour, M. N.; Mente, S.; Piotrowski, M. A.; Sakya, S. M.; Sheehan, S.; Steyn, S.
J.; Strick, C. A.; Williams, V. A.; Zhang, L. J. Med. Chem. 2009, 52, 3576.
10. Sit, S. Y.; Ehrgott, F. J.; Gao, J.; Meanwell, N. A. Bioorg. Med. Chem. Lett. 1996, 6,
499.
11. Hang, J. Q.; Rajendran, S.; Yang, Y.; Li, Y.; In, P. W. K.; Overton, H.; Parkes, K. E.
B.; Cammack, N.; Martin, J. A.; Klumpp, K. Biochem. Biophys. Res. Commun. 2004,
317, 321.
12. Esposito, F.; Kharlamova, T.; Distinto, S.; Zinzula, L.; Cheng, Y. C.; Dutschman,
G.; Floris, G.; Markt, P.; Corona, A.; Tramontano, E. FEBS J. 2011, 278, 1444.
13. Fuji, H.; Urano, E.; Futahashi, Y.; Hamatake, M.; Tatsumi, J.; Hoshino, T.;
Morikawa, Y.; Yamamoto, N.; Komano, J. J. Med. Chem. 2009, 52, 1380.
14. Huang, H.; Chopra, R.; Verdine, G.; Harrison, S. Science 1998, 282, 1669.
15. Jones, G.; Willett, P.; Glen, R.; Leach, A.; Taylor, R. J. Mol. Biol. 1997, 267, 727.
ties.17–19 The lastly reported work on
illustrates the feasibility of this strategy. Starting from the
a-hydroxytropolones
a
-
hydroxytropolone manicol, a potent selective but cytotoxic RNase
H inhibitor that is ineffective in replication tests, Le Grice and co-
workers took advantage from a terminal alkene to synthesize a ser-
ies of derivatives. Some modified compounds exhibited for the first
time antiviral activity at non cytotoxic concentrations.21 In this re-
gard, further optimizations of this 3-hydroxyquinolin-2(1H)-one
scaffold are currently underway in our laboratories. These studies
will be reported in due course.
´
16. Billamboz, M.; Bailly, F.; Lion, C.; Touati, N.; Vezin, H.; Calmels, C.; Andreola, M.
L.; Christ, F.; Debyser, Z.; Cotelle, P. J. Med. Chem. 2011, 54, 1812.
17. Lansdon, E. B.; Liu, Q.; Leavitt, S. A.; Balakrishnan, M.; Perry, J. K.; Lancaster-
Moyer, C.; Kutty, N.; Liu, X.; Squires, N. H.; Watkins, W. J.; Kirschberg, T. A.
Antimicrob. Agents Chemother. 2011, 55, 2905.
18. Williams, P. D.; Staas, D. D.; Venkatraman, S.; Loughran, H. M.; Ruzek, R. D.;
Booth, T. M.; Lyle, T. A.; Wai, J. S.; Vacca, J. P.; Feuston, B. P.; Ecto, L. T.; Flynn, J.
A.; DiStefano, D. J.; Hazuda, D. J.; Bahnck, C. M.; Himmelberger, A. L.;
Dornadula, G.; Hrin, R. C.; Stillmock, K. A.; Witmer, M. V.; Miller, M. D.;
Grobler, J. A. Bioorg. Med. Chem. Lett. 2010, 20, 6754.
19. Kirschberg, T. A.; Balakrishnan, M.; Squires, N. H.; Barnes, T.; Brendza, K. M.;
Chen, X.; Eisenberg, E. J.; Jin, W.; Kutty, N.; Leavitt, S.; Liclican, A.; Liu, Q.; Liu,
X.; Mak, J.; Perry, J. K.; Wang, M.; Watkins, W. J.; Lansdon, E. B. J. Med. Chem.
2009, 52, 5781.
20. Di Grandi, M.; Olson, M.; Prashad, A. S.; Bebernitz, G.; Luckay, A.; Mullen, S.;
Hu, Y. B.; Kishnamurthy, G.; Pitts, K.; O’Connell, J. Bioorg. Med. Chem. Lett. 2010,
20, 398.
Acknowledgments
This work was financially supported by le Ministère de l’Ens-
eignement Supérieur et de la Recherche Française and by Fondaz-
ione Banco di Sardegna. Francesca Esposito was supported by RAS
fellowships, co-financed with funds of PO Sardinia FSE 2007–2013
and of LR 7/2007, projects CRP2_683. Angela Corona was supported
by MIUR fellowship DM 198/2003. The Mass Spectrometry facility
used in this study was funded by the European Community (FED-
ER), the Région Nord-Pas de Calais (France), the CNRS, and the Uni-
versité des Sciences et Technologies de Lille. We are grateful to
Martine Michiels, Nam JooVanderveken, Barbara Van Remoortel
and Catherine Meliet for excellent technical assistance.
21. Chung, S.; Himmel, D. M.; Jiang, J. K.; Wojtak, K.; Bauman, J. D.; Rausch, J. W.;
Wilson, J. A.; Beutler, J. A.; Thomas, C. J.; Arnold, E.; Le Grice, S. J. Med. Chem.
2011, 54, 4462.
Supplementary data
Supplementary data associated with this article can be found, in