Journal of the American Chemical Society
Communication
Tetrahedron Lett. 2005, 46, 4941. Cu-mediated Meerwein arylation:
(i) Rondestvedt, C. S., Jr. Org. React. 1976, 24, 225.
Finally, by exploiting the presence of two reactive alkenes
and a strained cyclobutane ring in the terpene β-caryophyllene
(2w), we were able to engineer a cascade reaction that formed
13, a phenylated analogue of the complex molecule clovene
(Scheme 3b). We believe that this cascade reaction begins with
arylation of the strained trisubstituted (E)-alkene to give I. This
carbocation-like intermediate is intercepted through attack of
the exomethylene group, generating a new carbocation adjacent
to a cyclobutane (II) that subsequently fragments to form the
clovene derivative after elimination from III. This remarkable
process represents a novel transformation that mimics Barton’s
acid-mediated structural reorganization while introducing a new
functional group embedded within the framework of the
complex architecture.16
In summary, we have developed a new approach to alkene
arylation using diaryliodonium salts and Cu catalysis. We have
surveyed a range of simple alkenes and shown that the product
outcomes differ significantly from those commonly obtained by
the Heck reaction. Preliminary studies have shown that a
carbocation-type mechanism may be involved in these
reactions. We have used this hypothesis to design a number
of new tandem and cascade reactions that transform readily
available alkenes into complex molecules that may have broad
synthetic appeal.
(4) For previous work by us using Cu catalysts and diaryliodonium
salts, see: Indoles: (a) Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J.
Am. Chem. Soc. 2008, 130, 8172. Anilides: (b) Phipps, R. J.; Gaunt,
M. J. Science 2009, 323, 1593. Electron-rich arenes: (c) Ciana, C.-L.;
Phipps, R. J.; Brandt, J. R.; Meyer, F. M.; Gaunt, M. J. Angew. Chem.,
Int. Ed. 2010, 50, 457. α-Aryl carbonyls: (d) Duong, H. A.; Gilligan,
R. E.; Cooke, M. L.; Phipps, R. J.; Gaunt, M. J. Angew. Chem., Int. Ed.
2010, 50, 463. Enantioselective arylation of enol silanes: (e) Bigot,
A.; Williamson, A. E.; Gaunt, M. J. J. Am. Chem. Soc. 2011, 133, 13778.
Related work: (f) Allen, A. E.; MacMillan, D. W. C. J. Am. Chem. Soc.
2011, 133, 4260. (g) Harvey, J. S.; Simonovich, S. P.; Jamison, C. R.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2011, 133, 13782.
(5) For reports of the oxidation of Cu(I) salts with diaryliodonium
salts, see: (a) Lockhart, T. P. J. Am. Chem. Soc. 1983, 105, 1940.
(b) Beringer, F. M.; Geering, E. J.; Kuntz, I.; Mausner, M. J. Phys.
Chem. 1956, 60, 141. For reports of Cu(III) intermediates in Chan−
Lam coupling, see: (c) King, A. E.; Brunold, T. C.; Stahl, S. S. J. Am.
Chem. Soc. 2009, 131, 5044. For the isolation of a Cu(III)−aryl
complex, see: (d) Casitas, A.; King, A. E.; Parella, T.; Costas, M.; Stahl,
S. S.; Ribas, X. Chem. Sci. 2010, 1, 326.
For a review, see:
(e) Hickman, A. J.; Sanford, M. S. Nature 2012, 484, 177.
(6) For a recent review of diaryliodonium salts, see: Merritt, E. A.;
Olofsson, B. Angew. Chem., Int. Ed. 2009, 48, 9052.
(7) For a review of the use of diaryliodonium salts with TM catalysts,
see: Deprez, N. R.; Sanford, M. S. Inorg. Chem. 2007, 46, 1924.
(8) For mechanistic studies related to alkene Friedel−Crafts
acylation, see: (a) Beak, P.; Berger, K. R. J. Am. Chem. Soc. 1980,
102, 3848. For the reaction of perfluorolalkyliodonium salts with
alkenes, see: (b) Umeoto, T.; Kuriu, Y.; Nakayama, S.-I. Tetrahedron
Lett. 1982, 23, 1169.
ASSOCIATED CONTENT
* Supporting Information
Experimental details and characterization data. This material is
■
S
(9) For related Heck-type alkene arylations, see: (a) Werner, E. W.;
Sigman, M. S. J. Am. Chem. Soc. 2011, 133, 9692. (b) Werner, E. W.;
Sigman, M. S. J. Am. Chem. Soc. 2010, 132, 13981. (c) Delcamp, J. H.;
White, M. C. J. Am. Chem. Soc. 2006, 128, 15076.
AUTHOR INFORMATION
Corresponding Author
■
(10) For Cu-catalyzed alkene trifluoromethylation by hypervalent
iodine compounds, see: (a) Parsons, A. T.; Buchwald, S. L. Angew.
Chem., Int. Ed. 2011, 50, 9120. (b) Wang, X.; Ye, Y.; Zhang, S.; Feng,
J.; Xu, Y.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133, 16410.
(11) For the Heck reactions, see: Indene: (a) Nifant’ev, I. E.;
Sitnikov, A. A.; Andriukhova, N. V.; Laishevtsev, I. P.; Luzikov, Y. N.
Tetrahedron Lett. 2002, 43, 3213. Dihydronapthalene: (b) Maeda, K.;
Farrington, E. J.; Galardon, E.; John, B. D.; Brown, J. M. Adv. Synth.
Catal. 2002, 344, 104. (c) Datta, G. P.; von Schenck, H.; Hallberg, A.;
Larhed, M. J. Org. Chem. 2006, 71, 3896. (d) Loiseleur, O.; Hayashi,
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful to Phillip and Patricia Brown for the Next
Generation Fellowship (M.J.G.); EPSRC and ERC (M.J.G),
BBSRC (R.J.P.), the Marie Curie Foundation (H.A.D.), and the
Deutsche Forschungsgemeinschaft (S.R.) for fellowships; and
AstraZeneca (L.M.) for a studentship. We acknowledge the
EPSRC Mass Spectrometry Service (University of Swansea).
M.; Schmees, N.; Pfaltz, A. Synthesis 1997, 1338.
Cyclic
exomethylenes: (e) Larock, R. C.; Gong, W. H.; Baker, B. E.
Tetrahedron Lett. 1989, 30, 2603. (f) Furman, B.; Dziedzic, M.
Tetrahedron Lett. 2003, 44, 8249. Vinylcyclohexene: (g) Yao, Q.;
Kinney, E. P.; Yang, Z. J. Org. Chem. 2003, 68, 7528.
REFERENCES
■
(1) For general overviews of cross-coupling reactions between
alkenes and arenes in total synthesis, see: (a) Nicolaou, K. C.; Bulger,
P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4442 and references
(12) For commentary on metal-free reactions, see: (a) Leadbeater,
N. E. Nat. Chem. 2010, 2, 1007. (b) Thome,
Chem. Soc. Rev. 2012, 41, 979.
́
I.; Nijs, A.; Bolm, C.
therein.
For general overviews of metathesis reactions in total
(13) The following results (NMR yields based on 1,3,5-
trimethoxybenzene) were obtained in the absence of catalyst: (a)
At 110 °C, 3o gave 4o in 82% yield; (b) at 70 °C, 2s gave 8 in 6%
yield; (c) at 90 °C, 2u gave 9 in 20% yield; (d) at 90 °C, 2v gave 10
in 3% yield.
synthesis, see: (b) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew.
Chem., Int. Ed. 2005, 44, 4490 and references therein.
(2) For reports on the Heck reaction, see: (a) Heck, R. F.; Nolley, J.
P. J. Org. Chem. 1972, 37, 2320. (b) Beletskaya, I. P.; Cheprakov, A. V.
Chem. Rev. 2000, 100, 3009.
(14) Alpoim, M. C. M. d. C.; Morris, A. D.; Motherwell, W. B.;
(3) For reviews, see: Cu-mediated coupling reactions: (a) Beletskaya,
I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004, 248, 2337. (b) Ley, S.
V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400. (c) Evano,
G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054. (d) Chan,
D. M. T.; Lam, P. Y. S. In Boronic Acids; Hall, D. G., Ed.; Wiley- VCH:
Weinheim, Germany, 2005; pp 205−240. Cu-catalyzed Heck-type
reactions: (e) Declerck, V.; Martinez, J.; Lamaty, F. Synlett 2006, 3029.
(f) Peng, Y.; Chen, J.; Ding, J.; Liu, M.; Gao, W.; Wu, H. Synthesis
O’Shea, D. M. Tetrahedron Lett. 1988, 29, 4173.
(15) Le Tadic-Biadatti, M.-H.; Newcomb, M. J. Chem. Soc., Perkin
Trans. 2 1996, 1473.
(16) Aebi, A.; Barton, D. H. R.; Burgstahler, A. W.; Lindsey, A. S. J.
Chem. Soc. 1954, 4659.
2011, 213. (g) Calo,
Org. Lett. 2005, 7, 617. (h) Li, J.-H.; Wang, D.-P.; Xie, Y.-X.
̀
V.; Nacci, A.; Monopoli, A.; Ieva, E.; Cioffi, N.
D
dx.doi.org/10.1021/ja3039807 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX