ORGANIC
LETTERS
2012
Vol. 14, No. 13
3458–3461
Enantioselective Synthesis of a Dual
Orexin Receptor Antagonist
Ian K. Mangion,* Benjamin D. Sherry, Jingjun Yin, and Fred J. Fleitz
Department of Process Research, Merck and Co., Inc., P.O. Box 2000, Rahway, New
Jersey 07065, United States
Received May 22, 2012
ABSTRACT
A concise, enantioselective synthesis of the potent dual orexin inhibitor suvorexant (1) is reported. Key features of the synthesis include a mild
copper-catalyzed amination, a highly chemoselective conjugate addition, and a tandem enantioselective transamination/seven-membered ring
annulation. The synthesis requires inexpensive starting materials and only four linear steps for completion.
Orexins A and B are excitatory neuropeptides that stimu-
late wakefulness and play a central role in regulation of the
sleep cycle.1 Small molecule anta of orexin receptors OX1R
and OX2R2 have been found to promote sleep in multiple
species.3 Consequently, several laboratories have pursued the
design of selective orexin receptor antagonists for the treat-
ment of primary insomnia.4 Suvorexant (1) is a potent, brain-
penetrant dual orexin receptor antagonist recently disclosed
by Merck & Co. currently in phase III clinical trials.5 A
synthetic approach toward 1has been recently described,6 that
served as inspiration to design a novel approach that might
increase overall throughput with reduced cost and environ-
mental impact to satisfy projected commercial supply.
A key feature of 1 is the core chiral diazepane ring (2),
which had previously been assembled using a ruthenium-
catalyzed asymmetric reductive amination.7 This method
achieved high levels of enantioselectivity (94% ee) but
required the use of a transition metal catalyst and dichlor-
omethane as solvent, both of which we hoped to eliminate
to lessen the environmental impact of the process. There-
fore an alternative bond disconnection was envisioned
taking advantage of biocatalytic transamination technology
(Figure 1).8 Specifically, an asymmetric transamination of a
(1) For a review of studies on the orexin system, see: Hypocretins:
Integrators of Physiological Functions; de Lecea, L., Sutcliffe, J. G., Eds.;
Springer: New York, 2005.
(2) (a) De Lecea, L.; Kilduff, T. S.; Peyron, C.; Gao, X.-B.; Foye,
P. E.; Danielson, P. E.; Fukuhara, C.; Battenberg, E. L. F.; Gautvik,
V. T.; Bartlett, F. S., II; Frankel, W. N.; Van Den Pol, A. N.; Bloom,
F. E.; Gautvik, K. M.; Sutcliffe, J. G. Proc. Natl. Acad. Sci. U.S.A. 1998,
95, 322. (b) Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli,
R.; Tanaka, H.; Williams, S. C.; Richardson, J. A.; Kozlowski, G. P.;
Wilson, S.; Arch, J. R. S.; Buckingham, R. E.; Haynes, A. C.; Carr, S. A.;
Annan, R. S.; McNulty, D. E.; Liu, W.; Terret, J. A.; Elshourbagy,
N. A.; Bergsma, D. J.; Yanagisawa, M. Cell 1998, 92, 573.
(3) (a) Boss, C.; Brisbare-Roch, C.; Jenck, F.; Aissaoui, H.; Koberstein,
R.; Sifferlen, T.; Weller, T. Chemia 2008, 62, 974. (b) Boss, C.;
Brisbare-Roch, C.; Jenck, F. J. Med. Chem. 2009, 52, 891.
(4) (a) McAtee, L. C.; Sutton, S. W.; Rudolph, D. A.; Li, X.; Aluisio,
L. E.; Phoung, V. K.; Dvorak, C. A.; Lovenberg, T. W.; Carruthers,
N. I.; Jones, T. K. Bioorg. Med. Chem. Lett. 2004, 14, 4225. (b) Bergman,
J. M.; Roecker, A. J.; Mercer, S. P.; Bednar, R. A.; Reiss, D. R.;
Ransom, R. W.; Harrell, C. M.; Pettibone, D. J.; Lemaire, W.; Murphy,
K. L.; Li, C.; Preuksaritanont, T.; Winrow, C. J.; Renger, J. J.; Koblan,
K. S.; Hartman, G. D.; Coleman, P. J. Bioorg. Med. Chem. Lett. 2008,
18, 1425. (c) Coleman, P. J.; Renger, J. J. Expert Opin. Ther. Patents
2010, 20, 307.
(6) Baxter, C. A.; Cleator, E.; Brands, K. M. J.; Edwards, J. S.;
Reamer, R. A.; Sheen, F. J.; Stewart, G. W.; Strotman, N. A.; Wallace,
D. J. Org. Process Res. Dev. 2011, 15, 367.
(7) Strotman, N. A.; Baxter, C. A.; Brands, K. M. J.; Cleator, E.;
Krska, S. W.; Reamer, R. A.; Wallace, D. J.; Wright, T. J. J. Am. Chem.
Soc. 2011, 133, 8362.
(8) For reviews on biocatalytic transformations, see: (a) De Wildeman,
S. M. A.; Sonke, T.; Schoemaker, H. E.; May, O. Acc. Chem. Res. 2007,
40, 1260. (b) Moore, J. C.; Pollard, D. J.; Kosjek, B.; Devine, P. N. Acc.
Chem. Res. 2007, 40, 1412. (c) Reetz, M. T. Angew. Chem., Int. Ed. 2011,
50, 138.
(5) Cox, C. D.; Breslin, M. J.; Whitman, D. B.; Schreier, J. D.;
McGaughey, G. B.; Bogusky, M. J.; Roecker, A. J.; Mercer, S. P.;
Bednar, R. A.; Lemaire, W.; Bruno, J. G.; Reiss, D. R.; Harrell, C. M.;
Murphy, K. L.; Garson, S. L.; Doran, S. M.; Prueksaritanont, T.;
Anderson, W. B.; Tang, C.; Roller, S.; Cabalu, T. D.; Cui, D.; Hartman,
G. D.; Young, S. D.; Koblan, K. S.; Winrow, C. J.; Renger, J. J.;
Coleman, P. J. J. Med. Chem. 2010, 53, 5320.
r
10.1021/ol3014123
Published on Web 06/22/2012
2012 American Chemical Society