Journal of the American Chemical Society
Communication
(5) Recent reviews: (a) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem.
Rev. 2011, 111, 1417. (b) Rudolph, A.; Lautens, M. Angew. Chem., Int.
Ed. 2009, 48, 2656. (c) Frisch, A. C.; Beller, M. Angew. Chem., Int. Ed.
2005, 44, 674.
(6) Examples: (a) Wilsily, A.; Tramutola, F.; Owston, N. A.; Fu, G.
C. J. Am. Chem. Soc. 2012, 134, 5794. (b) Zultanski, S. L.; Fu, G. C. J.
Am. Chem. Soc. 2011, 133, 15362. (c) Lundin, P. M.; Fu, G. C. J. Am.
Chem. Soc. 2010, 132, 11027. (d) Owston, N. A.; Fu, G. C. J. Am.
Chem. Soc. 2010, 132, 11908. (e) Zhou, J.; Fu, G. C. J. Am. Chem. Soc.
corresponding chiral tosylates. Through the Cu-catalyzed cross-
coupling reaction, the chiral tosylates can be alkylated with
either primary or secondary alkyl Grignard reagents in good
yields (65−79%). The enantioselectivities of these two-step
transformations were measured to be as high as 98−99% ee.
Because many methods are now available for the preparation of
chiral secondary alcohols, the present method expands the
toolbox for the construction of carbon skeletons with
stereocontrol. Nonetheless, it is worth mentioning that all of
the examples in Table 3 involved Grignard reagents possessing
no chiral center. In a test experiment, we reacted sec-
́
2003, 125, 14726. (f) Caeiro, J.; Perez Sestelo, J.; Sarandeses, L. A.
Chem.Eur. J. 2008, 14, 741.
(7) Examples: (a) Altenhoff, G.; Wuertz, S.; Glorius, F. Tetrahedron
Lett. 2006, 47, 2925. (b) Rudolph, A.; Rackelmann, N.; Lautens, M.
Angew. Chem., Int. Ed. 2007, 46, 1485. (c) Rodríguez, N.; Ramírez de
1
butylmagnesium bromide with chiral tosylate 7a. H NMR
analysis of the product (obtained in 43% isolated yield) showed
that this reaction produced two diastereoisomers in a 1:1 ratio
(see the Supporting Information). Thus, the chiral center in the
tosylate could not induce stereoselectivity at the chiral carbon
in the Grignard reagent. It would be interesting to examine
whether the use of chiral ligands can solve this problem.20
To summarize, we have developed a Cu-catalyzed cross-
coupling reaction of nonactivated secondary alkyl bromides and
tosylates with secondary alkyl Grignard reagents. This reaction
represents a rare example of transition-metal-catalyzed cross-
coupling between two tertiary alkyl carbons. The use of
TMEDA and LiOMe as additives is crucial. The reaction
tolerates a number of synthetically relevant functional groups,
including esters, amides, and aryl halides, and aromatic and
tertiary alkyl Grignard reagents are also good substrates.
Furthermore, primary alkyl chlorides can be used in the
reaction, but they are less reactive than secondary alkyl
tosylates. Finally, X-ray crystal analysis of the products revealed
that the reaction occurs via an SN2 mechanism with inversion of
configuration. Thus, the present cross-coupling reaction
provides a general approach for the stereocontrolled formation
of C−C bonds from chiral secondary alcohols.
Arellano, C.; Asensio, G.; Medio-Simon
4223.
(8) Examples: (a) Nakamura, M.; Matsuo, S.; Ito, K.; Nakamura, E. J.
Am. Chem. Soc. 2004, 126, 3686. (b) Martin, R.; Furstner, A. Angew.
́
, M. Chem.Eur. J. 2007, 13,
̈
Chem., Int. Ed. 2004, 43, 3955. (c) Furstner, A.; Martin, R.; Krause, H.;
̈
Seidel, G.; Goddard, R.; Lehmann, C. W. J. Am. Chem. Soc. 2008, 130,
8773. (d) Hatakeyama, T.; Hashimoto, T.; Kondo, Y.; Fujiwara, Y.;
Seike, H.; Takaya, H.; Tamada, Y.; Ono, T.; Nakamura, M. J. Am.
Chem. Soc. 2010, 132, 10674. (e) Hatakeyama, T.; Okada, Y.;
Yoshimoto, Y.; Nakamura, M. Angew. Chem., Int. Ed. 2011, 50, 10973.
(9) Examples: (a) Tsuji, T.; Yorimitsu, H.; Oshima, K. Angew. Chem.,
Int. Ed. 2002, 41, 4137. (b) Wakabayashi, K.; Yorimitsu, H.; Oshima,
K. J. Am. Chem. Soc. 2001, 123, 5374. (c) Ohmiya, H.; Yorimitsu, H.;
Oshima, K. J. Am. Chem. Soc. 2006, 128, 1886.
(10) (a) Noda, D.; Sunada, Y.; Hatakeyama, T.; Nakamura, M.;
Nagashima, H. J. Am. Chem. Soc. 2009, 131, 6079. (b) Jones, G. D.;
Martin, J. L.; McFarland, C.; Allen, O. R.; Hall, R. E.; Haley, A. D.;
Brandon, R. J.; Konovalova, T.; Desrochers, P. J.; Pulay, P.; Vicic, D. A.
J. Am. Chem. Soc. 2006, 128, 13175. (c) Phapale, V. B.; Bunuel, E.;
̃
́
García-Iglesias, M.; Cardenas, D. J. Angew. Chem., Int. Ed. 2007, 46,
8790. (d) Ohmiya, H.; Tsuji, T.; Yorimitsu, H.; Oshima, K. Chem.
Eur. J. 2004, 10, 5640.
(11) Gonzal
5360.
́
ez-Bobes, F.; Fu, G. C. J. Am. Chem. Soc. 2006, 128,
(12) In a recent study of Ni-catalyzed cross-coupling of alkyl halides
(see: Ren, P.; Vechorkin, O.; von Allmen, K.; Scopelliti, R.; Hu, X. L.
J. Am. Chem. Soc. 2011, 133, 7084 ), the authors reported an example
of the coupling of a secondary alkyl iodide with a secondary alkyl
Grignard reagent. The yield was only 7%.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental details, spectra, and crystallographic data (CIF).
This material is available free of charge via the Internet at
(13) Burns, D. H.; Miller, J. D.; Chan, H. K.; Delaney, M. O. J. Am.
Chem. Soc. 1997, 119, 2125.
(14) (a) Terao, J.; Ikumi, A.; Kuniyasu, H.; Kambe, N. J. Am. Chem.
Soc. 2003, 125, 5646. (b) Terao, J.; Todo, H.; Begum, S. A.; Kuniyasu,
H.; Kambe, N. Angew. Chem., Int. Ed. 2007, 46, 2086.
AUTHOR INFORMATION
■
Corresponding Author
́ ́
(15) (a) Cahiez, G.; Chaboche, C.; Jezequel, M. Tetrahedron 2000,
56, 2733. (b) Cahiez, G.; Gager, O.; Buendia, J. Synlett 2010, 299.
(16) (a) Nakamura, E.; Arai, M.; Lipshutz, B. H. J. Org. Chem. 1991,
56, 5489. (b) Lipshutz, B. H. Acc. Chem. Res. 1997, 30, 277.
(c) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004, 248,
2337. (d) Herber, C.; Breit, B. Eur. J. Org. Chem. 2007, 3512.
(17) Yang, C.-T.; Zhang, Z.-Q.; Liu, Y.-C.; Liu, L. Angew. Chem., Int.
Ed. 2011, 50, 3904.
(18) Oshima and co-workers once reported a Cu(OTf)2-catalyzed
reaction between tertiary alkyl halides and cyclopentadienyl Grignard
reagents (see: Sai, M.; Someya, H.; Yorimitsu, H.; Oshima, K. Org.
Lett. 2008, 10, 2545 ). This particular reaction was proposed to involve
a special [Cp3Cu(II)]MgBr species.
(19) (a) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2011, 2, 27. (b) Ma,
D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450.
(20) Recent examples of the use of chiral ligands in Cu-catalyzed C−
C bond-formation reactions: (a) Gao, F.; McGrath, K. P.; Lee, Y.;
Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 14315. (b) Langlois, J.-B.;
Author Contributions
§C.-T.Y. and Z.-Q.Z contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Our study was supported by the “973” Program of the Ministry
of Science and Technology (Grant 2011CB965300).
REFERENCES
■
(1) (a) Kochi, J. K.; Tamura, M. J. Am. Chem. Soc. 1971, 93, 1483.
(b) Tamura, M.; Kochi, J. K. J. Organomet. Chem. 1972, 42, 205.
(2) Ishiyama, T.; Abe, S.; Miyaura, N.; Suzuki, A. Chem. Lett. 1992,
691.
(3) Devasagayaraj, A.; Studemann, T.; Knochel, P. Angew. Chem., Int.
Ed. Engl. 1995, 34, 2723.
(4) Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; de Meijere, A.,
Stang, P. J., Eds.; Wiley-VCH, Weinheim, Germany, 2004.
̈
Alexakis, A. Angew. Chem., Int. Ed. 2011, 50, 1877. (c) Per
Fananas-Mastral, M.; Bos, P. H.; Rudolph, A.; Harutyunyan, S. R.;
Feringa, B. L. Nat. Chem. 2011, 3, 377.
́
ez, M.;
́
̃
11127
dx.doi.org/10.1021/ja304848n | J. Am. Chem. Soc. 2012, 134, 11124−11127