3 For seminal work on the (mechanistically distinct) imine-based
reaction: (a) N. Castagnoli, J. Org. Chem., 1969, 34, 3187;
(b) M. Cushman, J. Gentry and F. W. Dekow, J. Org. Chem.,
1977, 42, 1111; (c) M. A. Haimova, N. M. Mollov, S. C. Ivanova,
A. I. Dimitrova and V. I. Ognyanov, Tetrahedron, 1977, 33, 331.
4 Lewis acid catalysis: (a) J. M. Lawlor and M. B. McNamee,
Tetrahedron Lett., 1983, 24, 2211; (b) N. Yu, R. Poulain,
A. Tartar and J.-C. Gesquiere, Tetrahedron, 1999, 55, 13735.
5 For a review of both the aldehyde and the imine based reactions
Scheme 3 The use of the dibromoanhydride 14b.
Either a-unbranched (entry 8) or more hindered branched-
aldehydes (entry 9) could be converted to trans-24–25 using
this protocol. Diastereocontrol is less efficient in these processes
however facial control is excellent (95% ee).
see: M. Gonzalez-Lopez and J. T. Shaw, Chem. Rev., 2009,
´ ´
109, 164.
6 An uncatalysed variant involving clean deprotonation of the
anhydride by a strong base such as Na-, K- or LiHMDS is
possible: (a) S.-I. Yoshida, T. Ogiku, H. Ohmizu and T. Iwasaki,
Tetrahedron Lett., 1995, 36, 1455; (b) S.-I. Yoshida, T. Ogiku,
H. Ohmizu and T. Iwasaki, J. Org. Chem., 1997, 62, 1310;
(c) S.-I. Yoshida, H. Ohmizu and T. Iwasaki, Tetrahedron Lett.,
1995, 36, 8225.
7 (a) L. A. Bonner, B. R. Chemel, V. J. Watts and D. E. Nichols,
Bioorg. Med. Chem., 2010, 18, 6763; (b) B. R. Chemel,
J. I. Juncosa, M. A. Lill, V. J. Watts, D. E. Nichols,
L. A. Bonner and U. Laban, ChemMedChem, 2011, 6, 1024.
8 (a) D. R. Stevens, C. P. Till and D. A. Whiting, J. Chem. Soc.,
Perkin Trans. 1, 1992, 185; (b) J. A. Tran, C. W. Chen, F. C. Tucci,
W. Jiang, B. A. Fleck and C. Chen, Bioorg. Med. Chem. Lett.,
2008, 18, 1124.
The dibromoarylsuccinic anhydride 14b is also a viable
substrate under optimised conditions: the trans-lactone 26
(which offers the practitioner the option of either dehalogena-
tion to the corresponding phenylsuccinic anhydride-derived
lactone or elaboration via Pd(0)-mediated coupling chemistry)
can be readily prepared with high enantioselectivity (Scheme 3).
In summary, it has been shown that succinic anhydride is
unreactive in the organocatalytic asymmetric formal cyclo-
addition of cyclic anhydrides and aldehydes—a reaction
which has previously only been possible using homophthalic
anhydride substrates. It was speculated that this inactivity is
related to poor enolisability in the presence of the catalyst; a
hypothesis which was supported by the finding that the more
hindered (yet presumably more enolisable) phenylsuccinic
anhydride participated in the reaction–albeit with unsatisfac-
tory yield and product ee. After modification of the a-aryl
substituent to incorporate electron withdrawing functionality,
a significant increase in reactivity was observed, which allowed
the optimisation of the protocol and the identification of the
p-nitro analogue 14d as a superior substrate which could react
with benzaldehyde to furnish the aryl paraconic acid derivative
17d in excellent yield and stereocontrol. This is the first
example of such a catalytic, asymmetric reaction using a
succinic anhydride derivative. Further investigation revealed
that while simple aromatic aldehydes behave in a similar
manner to benzaldehyde in the process; hindered, heterocyclic
and aliphatic analogues undergo reaction with excellent levels
of enantiocontrol.
9 C. Cornaggia, F. Manoni, E. Torrente, S. Tallon and S. J. Connon,
Org. Lett., 2012, 14, 1850.
10 (a) Cytotoxic/antiproliferative: S. Wan, F. Wu, J. C. Rech,
M. E. Green, R. Balachandran, W. S. Horne, B. W. Day and
P.
E.
Floreancig,
J.
Am.
Chem.
Soc.,
2011,
133, 16668(b) phytotoxic: M. Enomoto and S. Kuwahara, Angew.
Chem., Int. Ed., 2009, 48, 1144(c) antimicrobial: T. K. Tabopda,
G. W. Fotso, J. Ngoupayo, A.-C. Mitaine-Offer, B. T. Ngadjui and
M.-A. Lacaille-Dubois, Planta Med., 2009, 75, 1228(d) antifungal:
H. Hussain, N. Akhtar, S. Draeger, B. Schulz, G. Pescitelli,
P. Salvadori, S. Antus, T. Kurtan and K. Krohn, Eur. J. Org.
´
Chem., 2009, 749(e) antiulcer: Y. Shimojima, T. Shirai, T. Baba
and H. Hayashi, J. Med. Chem., 1985, 28, 3(f) antimalarial/
antiinflammatory: P. Kongsaeree, S. Prabpai, N. Sriubolmas,
C. Vongvein and S. Wiyakrutta, J. Nat. Prod., 2003,
66, 709(g) antioxidant: N. Nazir, S. Koul, M. A. Quirishi,
M. A. Najar and M. I. Zargar, Eur. J. Med. Chem., 2011,
46, 2415(h) antiallergic: M. Yoshikawa, E. Uchida, N. Chatan,
H. Kobayashi, Y. Naitoh, Y. Okuno, H. Matsuda, J. Yamahara
and N. Murakami, Chem. Pharm. Bull., 1992, 40, 3352.
11 (a) H. M. R. Hoffmann and J. Rabe, Angew. Chem., Int. Ed. Engl.,
1985, 24, 94; (b) S. S. C. Koch and A. R. Chamberlin, Enantio-
merically pure gammabutyrolactones in natural products synthesis,
in Studies in Natural Products Chemistry, ed. Atta-ur-Rahman,
Elsevier Science, 1995, vol. 16, p. 687; (c) M. Seitz and O. Reiser,
Curr. Opin. Chem. Biol., 2005, 9, 285.
12 Review: R. Bandichhor, B. Nosse and O. Reiser, Top. Curr. Chem.,
2005, 243, 43.
13 Selected syntheses of paraconic acids: (a) J. M. Crawforth and
B. J. Rawlings, Tetrahedron Lett., 1995, 36, 6345; (b) T. Martin,
C. M. Rodriguez and V. S. Martin, J. Org. Chem., 1996, 61, 6450;
(c) Y. Masaki, H. Araski and A. Itoh, Tetrahedron Lett., 1999,
This process provides one-pot access to highly synthetically
malleable g-butyrolactone materials (which are simple
derivatives of a class of natural products of considerable
pharmacological activity) with the formation of two new
stereocentres–one of which is quaternary–under mild condi-
tions with good-excellent stereocontrol. Investigations aimed
at further broadening the scope of this promising methodo-
logy are underway.
40, 4829; (d) C. C. Bohm and O. Resier, Org. Lett., 2001, 3, 1315;
¨
(e) R. B. Chhor, B. Nosse, S. Sorgel, C. Bohm, M. Seitz and
¨ ¨
O. Reiser, Chem.–Eur. J., 2003, 9, 260; (f) M. T. Barros,
C. D. Maycock and M. R. Ventura, Org. Lett., 2003, 5, 4097;
We are grateful to the European Research Council and
to Trinity College Dublin for financial support and to
Dr T. McCabe for X-ray crystal diffraction analysis.
(g) S. Braukmuller and R. Bruckner, Eur. J. Org. Chem., 2006,
2110.
¨
¨
Notes and references
14 M. Cushman and E. J. Madaj, J. Org. Chem., 1987, 52, 907.
15 More recently, Shaw and Wei demonstrated that the removable
(but less tuneable) thioether moiety can be used in a similar fashion
at the a-carbon: J. Wei and J. T. Shaw, Org. Lett., 2007, 9, 4077.
16 Paraconic acid derivatives with quaternary stereocentres have
recently been evaluated as antitumour agents - one of which
possessed sub-micromolar activity against multiple cancer cell
1 (a) W. H. Perkin, J. Chem. Soc., 1868, 21, 181; (b) W. H. Perkin,
J. Chem. Soc., 1877, 31, 388.
2 (a) H. Erdmann and R. Kirchhoff, Justus Liebigs Ann. Chem.,
1888, 247, 368; (b) H. Erdmann and E. Schwechten, Justus Liebigs
Ann. Chem., 1890, 260, 74; (c) R. C. Fuson, J. Am. Chem. Soc.,
1924, 46, 2779; (d) J. B. Shoesmith and A. Guthrie, J. Chem. Soc.,
1928, 2332; (e) J. B. Jones and A. R. Pinder, J. Chem. Soc., 1958,
2612.
´
lines: C. Le Floch, E. Le. Gall, E. Leonel, T. Martens and
T. Cresteil, Bioorg. Med. Chem. Lett., 2011, 21, 7054.
c
6504 Chem. Commun., 2012, 48, 6502–6504
This journal is The Royal Society of Chemistry 2012