overlapping with solvent signals, 4.26 (q, J = 7.0 Hz, 2H), 4.65
(br, 2H), 4.97 (br, ∼0.4H), 5.21 (s, 1H), 7.07–7.18 (m, 2H),
7.85–7.86 (m, 1H), 8.37 (br, 1H), 8.72 (s, 1H); HR-ESI-MS
Notes and references
1 (a) P. Caravan, J. J. Ellison, T. J. McMurry and R. B. Lauffer, Chem.
Rev., 1999, 99, 2293; (b) P. Caravan, Acc. Chem. Res., 2009, 42, 851;
(c) J. L. Major and T. J. Meade, Acc. Chem. Res., 2009, 42, 893.
2 E. G. Moore, A. P. S. Samuel and K. N. Raymond, Acc. Chem. Res.,
2009, 42, 542.
3 (a) C. P. Montgomery, B. S. Murray, E. J. New, R. Pal and D. Parker,
Acc. Chem. Res., 2009, 42, 925; (b) J.-C. G. Bünzli, Chem. Rev., 2010,
110, 2729.
4 (a) J. Wöhnert, K. J. Franz, M. Nitz, B. Imperiali and H. Schwalbe, J.
Am. Chem. Soc., 2003, 125, 13338; (b) N. R. Silvaggi, L. J. Martin,
H. Schwalbe, B. Imperiali and K. N. Allen, J. Am. Chem. Soc., 2007,
129, 7114.
5 (a) J.-C. G. Bünzli and C. Piguet, Chem. Soc. Rev., 2005, 34, 1048;
(b) S. V. Eliseeva and J.-C. G. Bünzli, Chem. Soc. Rev., 2010, 39, 189.
6 (a) S. Faulkner, S. J. A. Pope and B. P. Burton-Pye, Appl. Spectrosc.
Rev., 2005, 40, 1; (b) P. R. Selvin, Annu. Rev. Biophys. Biomol. Struct.,
2002, 31, 275.
calcd 846.1585 obsd 846.1558 [(M
+
Na)+,
M
=
C31H38LaN7O11].
i
Eu4F. 30 min, Pr2NH; 98%: tR = 3.18 min (88.71% purity,
contains 7.52% F); νmax 3264, 2984, 2868, 2723, 2495, 2137,
1731, 1704, 1678, 1610, 1505, 1466, 1389, 1304, 1133,
1072 cm−1; λmax = 255 nm, 345 nm, 405 nm (sh); λem = 400 nm
1
(ligand), 578, 589, 614, 651, 698 nm (H2O, λex = 356 nm); H
NMR (300 MHz, D2O, signals outside 0–6 ppm reported)
−13.04, −12.18, −11.19, −8.33, −6.42, 6.43, 6.89, 7.39, 7.54,
7.87, 8.50; HR-ESI-MS calcd 860.1734 obsd 860.1699
[(M + Na)+, M = C31H38EuN7O11].
i
Tb4F. 30 min, Pr2NH; 37%, 33% chrom: tR = 3.23 min
7 A. E. Soini, A. Kuusisto, N. J. Meltola, E. Soini and L. Seveus, Microsc.
Res. Tech., 2003, 62, 396.
(66.36% purity, contains 22.71% F); νmax 3359, 2978, 2836,
2761, 2723, 2488, 2183, 2088, 1598, 1441, 1399, 1323 cm−1
;
8 (a) M. Xiao, H. Li, G. E. Snyder, R. Cooke, R. G. Yount and P.
R. Selvin, Proc. Natl. Acad. Sci. U. S. A., 1998, 95, 5309; (b) A. Cha, G.
E. Snyder, P. R. Selvin and F. Bezanilla, Nature, 1999, 402, 809.
9 (a) S. H. Kim, J. R. Gunther and J. A. Katzenellenbogen, J. Am. Chem.
Soc., 2010, 132, 4685; (b) B. R. Sculimbrene and B. Imperiali, J. Am.
Chem. Soc., 2006, 128, 7346; (c) S. H. Kim, P. Ge and J.
A. Katzenellenbogen, Chem. Commun., 2009, 183; (d) K. R. Kupcso, D.
K. Stafslien, T. DeRosier, T. M. Hallis, M. Szatkowski Ozers and
K. Vogel, J. Am. Chem. Soc., 2007, 129, 13372; (e) E. Pazos,
D. Torrecilla, M. Vázquez López, L. Castedo, J. L. Mascareñas, A. Vidal
and M. E. Vázquez, J. Am. Chem. Soc., 2008, 130, 9652.
10 (a) M. Kawagucki, T. Okabe, T. Terai, K. Hanaoka, H. Kojima,
I. Minegishi and T. Nagano, Chem.–Eur. J., 2010, 16, 13479; (b) M.
S. Tremblay, M. Halim and D. Sames, J. Am. Chem. Soc., 2007, 129,
7570; (c) S. Mizukami, K. Tonai, M. Kaneko and K. Kikuchi, J. Am.
Chem. Soc., 2008, 130, 14376; (d) M. Halim, M. S. Tremblay,
S. Jokusch, N. J. Turro and D. Sames, J. Am. Chem. Soc., 2007, 129,
7704.
11 (a) G.-L. Law, C. Man, D. Parker and J. W. Walton, Chem. Commun.,
2010, 46, 2391; (b) A. Bodi, K. E. Borbas and J. I. Bruce, Dalton Trans.,
2007, 4352; (c) H.-K. Kong, F. L. Chadbourne, G.-L. Law, H. Li, H.-
L. Tam, S. I. Cobb, C.-K. Lau, C.-S. Lee and K.-L. Wong, Chem.
Commun., 2011, 47, 8052; (d) K. Hanaoka, K. Kikuchi, S. Kobayashi
and T. Nagano, J. Am. Chem. Soc., 2007, 129, 13502; (e) O. Alptürk,
O. Rusin, S. O. Fakayode, W. Wang, J. O. Escobedo, I. M. Warner, W.
E. Crowe, V. Král, J. M. Pruet and R. M. Strongin, Proc. Natl. Acad.
Sci. U. S. A., 2006, 103, 9756; (f) G.-L. Law, R. Pal, L. O. Palsson,
D. Parker and K.-L. Wong, Chem. Commun., 2009, 7321;
(g) T. Gunnlaugsson, J. P. Leonard, K. Sénéchal and A. J. Harte, Chem.
Commun., 2004, 782; (h) T. Gunnlaugsson and J. P. Leonard, Chem.
Commun., 2003, 2424; (i) S. E. Page, K. T. Wilke and V. C. Pierre,
Chem. Commun., 2010, 46, 2423; ( j) A. R. Lippert, T. Gschneidtner and
C. J. Chang, Chem. Commun., 2010, 46, 7510.
λmax = 266 nm, 347 nm, 401 nm; λem = 400 nm (ligand, only
signal in steady-state mode); λem = very faint Tb-emission (50 μs
delay, H2O, λex = 356 nm); HR-ESI-MS calcd 844.1955 obsd
844.1972 [(M + H)+, M = C31H38N7O11Tb].
i
La5A2. 30 min, Pr2NH; 47%, 44% chrom; tR = 9.98 min
(93.60% purity); νmax 3374, 2974, 2837, 2759, 2721, 2487,
1
2099, 1984, 1586, 1442, 1399, 1323 cm−1; λmax = 263 nm; H
NMR (300 MHz, DMSO-d6) 2.05–4.65 (m), 5.61–5.65 (2 × br,
4H), 7.31–7.47 (br m, 10H), 8.29 (br, 2H); HR-ESI-MS calcd
767.2292 obsd 767.2314 [(M + H)+, M = C32H40LaN10O4].
EuLa17. 30 min, piperidine, 33%; tR = 3.26 min (92.51%
purity); νmax 3302, 2971, 2855, 2493, 2098, 1723, 1596, 1454,
1383, 1319, 1275, 1086 cm−1; λmax = 274 nm, 319 nm; λem
=
579, 589, 612, 650, 698 (H2O, λex = 320 nm); 1H NMR
(300 MHz, D2O) −13.13, −12.36, −11.11, −8.37, −6.35,
1.14–3.56, 6.30, 7.36, 7.71, 8.22, 9.56; HR-ESI-MS calcd
1285.3064 obsd 1285.3047 [M+, M = C46H65EuLaN12O13].
EuTb17. 30 min, piperidine, 60%; tR = 3.24 min (93.16%
purity); νmax 3367, 2976, 2843, 2723, 2487, 2099, 1593, 1441,
1398, 1321 cm−1; λmax = 268 nm, 322 nm; λem = 486, 542, 580,
587, 613, 653, 700 nm (H2O, λex = 320 nm); HR-ESI-MS
i
calcd 1406.4100, obsd. 1406.4519 [(M + CH3CN + PrOH)+,
M = C46H65EuN12O13Tb], MALDI-MS 668.1 [calcd 668.2
(M + MeOH + H)2+].
LaEu218. 60 min, piperidine, 34%; νmax 3283, 2950, 2101,
1611, 1408 cm−1; λmax = 220 nm (sh), 264 nm; λem = 578, 589,
12 D. Parker, R. S. Dickins, H. Puschmann, C. Crossland and
J. A. K. Howard, Chem. Rev., 2002, 102, 1977.
1
614, 648, 699 nm (H2O, λex = 397 nm); H NMR (300 MHz,
13 M. Meldal and C. W. Tornøe, Chem. Rev., 2008, 108, 2952.
14 J. Ketola, J. Katajisto, H. Hakala and J. Hovinen, Helv. Chim. Acta,
2007, 90, 607.
15 E. Tamanini, K. Flavin, M. Motevalli, S. Piperno, L. A. Gheber, M.
H. Todd and M. Watkinson, Inorg. Chem., 2010, 49, 3789.
D2O) −13.12, −12.33, −11.07, −8.37, −6.29, −5.97, −5.02,
−4.80, −4.74, 1.01–3.79, 9.48 (br); HR-ESI-MS calcd
1716.3254 obsd 1716.3318 [(M+
C50H78Eu2LaN18O16].
+
C6H11N), M+
=
16 C.-L. Do-Thanh, M. M. Rowland and M. D. Best, Tetrahedron, 2011, 67,
3803.
17 M. Jauregui, W. S. Perry, C. Allain, L. R. Vidler, M. C. Willis, A.
M. Kenwright, J. S. Snaith, G. J. Stasiuk, M. P. Lowe and S. Faulkner,
Dalton Trans., 2009, 6283.
18 J. K. Molloy, O. Kotova, R. D. Peacock and T. Gunnlaugsson, Org.
Biomol. Chem., 2012, 10, 314.
Acknowledgements
Funding from the Swedish Research Council, Carl Tryggers Stif-
telse, and the Departments of Chemistry, Uppsala University and
Organic Chemistry, Stockholm University is gratefully acknowl-
edged. We thank Mr Fredrik Tinnis for compound B, and
Dr James Bruce and Dr Luke Pilarski for critical reading of the
manuscript.
19 R. F. H. Viguier and A. N. Hulme, J. Am. Chem. Soc., 2006, 128, 11370.
20 G. J. Stasiuk and M. P. Lowe, Dalton Trans., 2009, 9725.
21 M. Tropiano, N. L. Kilah, M. Morten, H. Rahman, J. J. Davis, P. D. Beer
and S. Faulkner, J. Am. Chem. Soc., 2011, 133, 11847.
22 (a) M. Milne, K. Chicas, A. Li, R. Bartha and R. H. E. Hudson, Org.
Biomol. Chem., 2012, 10, 287; (b) Y. Song, X. Xu, K. W. MacRenaris,
X.-Q. Zhang, C. A. Mirkin and T. J. Meade, Angew. Chem., Int. Ed.,
7668 | Dalton Trans., 2012, 41, 7660–7669
This journal is © The Royal Society of Chemistry 2012