suggest that glycogen is the binding target of CDg4 in mESC.
This is an intriguing example of a fluorescent small molecule
targeting a carbohydrate, considering the fact that most of the
conventional small molecule targets in chemical genetics are
proteins.11
The glycogen specific probe CDg4 may enable the detection
of mESC and the quantification of embryonic surface glyco-
gen levels.
This study was supported by intramural funding and grant
10/1/21/19/656 from the A*STAR (Agency for Science, Tech-
nology and Research, Singapore) Biomedical Research
Council.
Notes and references
1 (a) M. Vendrell, J. S. Lee and Y. T. Chang, Curr. Opin. Chem.
Biol., 2010, 14, 383; (b) J. S. Lee, N. Y. Kang, Y. K. Kim,
A. Samanta, S. H. Feng, H. K. Kim, M. Vendrell, J. H. Park
and Y. T. Chang, J. Am. Chem. Soc., 2009, 131, 10077;
(c) N. Y. Kang, H. H. Ha, S. W. Yun, Y. H. Yu and
Y. T. Chang, Chem. Soc. Rev., 2011, 40, 3613; (d) R. K. Das,
A. Samanta, H. H. Ha and Y. T. Chang, RSC Adv., 2011, 1, 573.
2 (a) S. S. Mokle, M. A. Sayyed, Kothawar and Chopde, Int. J.
Chem. Sci., 2004, 2, 96; (b) H. K. Hsieh, L. T. Tsao, J. P. Wang and
C. N. Lin, J. Pharm. Pharmacol., 2000, 52, 163; (c) G. S. Viana,
M. A. Bandeira and F. Matos, Phytomedicine, 2003, 10, 189.
3 (a) M. Gaber, T. A. Fayed, S. A. El-Daly and Y. S. El-Sayed,
Photochem. Photobiol. Sci., 2008, 7, 257; (b) K. Rurack,
J. L. Bricks, G. Reck, R. Radeglia and U. Resch-Genger,
J. Phys. Chem. A, 2000, 104, 3087; (c) C. G. Niu, A. L. Guan,
G. M. Zeng, Y. G. Liu and Z. W. Li, Anal. Chim. Acta, 2006,
577, 264; (d) V. Marchi-Artzner, B. Lorz, C. Gosse, L. Jullien,
R. Merkel, H. Kessler and E. Sackmann, Langmuir, 2003, 19, 835;
(e) M. Ono, R. Ikeoka, H. Watanabe, H. Kimura, T. Fuchigami,
M. Haratake, H. Saji and M. Nakayama, ACS Chem. Neurosci.,
2010, 1, 598; (f) P. F. Wang and S. K. Wu, J. Photochem.
Photobiol., A, 1995, 86, 109; (g) D. G. Powers, D. S. Casebier,
D. Fokas, W. J. Ryan, J. R. Troth and D. L. Coffen, Tetrahedron,
1998, 54, 4085; (h) A. Ullah, F. L. Ansari, I. Haq, S. Nazir and
B. Mirzab, Chem. Biodiversity, 2007, 4, 203; (i) A. R. Jagtap,
V. S. Satam, R. N. Rajule and V. R. Kanetkar, Dyes Pigm., 2011,
91, 20.
Fig. 4 (a) Fluorescence increase of CDg4 spectra (10 mM) upon
interaction with serial concentrations of glycogen (ex: 430 nm).
Fluorescent intensity was measured at 560 nm. The same concentra-
tions of dextran, dermatan sulphate, hyaluronic acid, amylose and
heparin were used. (b) Histogram of flow cytometry analysis. 0.5%
amylase was treated to mESC after 2 mM of CDg4 staining. The CDg4
signal was measured by flow cytometry. (c) CDg4 fluorescent images
(left) and bright field (right) images of mESC and mouse neurosphere
(NSP). Scale bar: 100 mm. (d) Glycogen quantification assay for mESC
and neurosphere (NSP).
with only a(1 - 4) linkage, and dextran has a(1 - 6) main
chains with short a(1 - 3) branches. We speculate the selective
response of CDg4 to glycogen is due to the unique secondary
structure derived from the a(1 - 6) branched glucose
structure. Also, glycogen is a globular shaped polymer with
longer branch units and a larger exposed area, compared to
dextran and amylose, which are in relatively more packed
forms.8 Glycogen is known for energy storage and the
accumulation is dramatically increased during early embryonic
development.9 High glycogen accumulation in the inner cell
mass (ICM) and also inter cellular localization has been
demonstrated as depicted in Fig. S10w.9c To confirm if
glycogen on the mESC colony surface is indeed responsible
for the selective staining of CDg4 to mESC in comparison to
other cell types, we hydrolyzed the surface glycogen of mESC
using amylase.
4 C. A. Lipinski, F. Lombardo, B. W. Dominy and P. J. Feeney,
Adv. Drug Delivery Rev., 2001, 46, 3.
5 (a) C. N. Im, N. Y. Kang, H. H. Ha, X. Z. Bi, J. J. Lee, S. J. Park,
S. Y. Lee, M. Vendrell, Y. K. Kim, J. S. Lee, J. Li, Y. H. Ahn,
B. Feng, H. H. Ng, S. W. Yun and Y. T. Chang, Angew. Chem.,
Int. Ed., 2010, 49, 7497; (b) K. K. Ghosh, H. H. Ha, N. Y. Kang,
Y. Chandran and Y. T. Chang, Chem. Commun., 2011, 47, 7488.
6 (a) A. V. Nairn, A. Kinoshita-Toyoda, H. Toyoda, J. Xie,
K. Harris, S. Dalton, M. Kulik, J. M. Pierce, T. Toida,
K. W. Moremen and R. J. Linhardt, J. Proteome Res.,
2007, 6, 4374; (b) R. J. Linhardt and T. Toida, Acc. Chem. Res.,
2004, 37, 431; (c) B. Thisse and C. Thisse, Dev. Biol., 2005,
287, 390.
The amylase treatment dramatically reduced the fluores-
cence intensity of mESC stained by CDg4 (Fig. 4b) indicating
that the molecular binding target of CDg4 is the glycogen
located on the surface of the mESC colony. Next, we examined
the CDg4 staining selectivity in neurosphere (NSP) to rule out
the possibility that CDg4 simply stains clustering cells. It was
clearly demonstrated that mouse NSP was not stained by
CDg4, despite their similar physical morphology (Fig. 4c).
To confirm the connection of this selectivity to glycogen
content on the colony surface, we quantified10 the glycogen in
each type of stem cell and found that mESC has 9 times higher
glycogen content than NSP (Fig. 4d). Altogether, these data
7 J. S. Lee, H. K. Kim, S. H. Feng, M. Vendrell and Y. T. Chang,
Chem. Commun., 2011, 47, 2339.
8 (a) B. J. Gibbons, P. J. Roach and T. D. Hurley, J. Mol. Biol.,
2002, 319, 463; (b) J. Lomako, W. M. Lomako and W. J. Whelan,
Biochim. Biophys. Acta, Gen. Subj., 2004, 1673, 45;
(c) A. M. Myers, M. K. Morell, M. G. James and S. G. Ball, Plant
Physiol., 2000, 122, 989.
9 (a) C. B. Ozias and S. Estern, Biol. Reprod., 1973, 8, 467;
(b) W. Dormeyer, D. V. Hoof, S. R. Braam, A. J. R. Heck,
C. L. Mummery and J. Krijgsveld, J. Proteome Res., 2008,
7, 2936; (c) S. Kolle, M. Stojkovic, K. Prelle, M. Waters,
E. Wolf and F. Sinowatz, Biol. Reprod., 2001, 64, 1826.
10 F. Huijing, Clin. Chim. Acta, 1970, 30, 567.
11 D. P. Walsh and Y. T. Chang, Chem. Rev., 2006, 106, 2476.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 6681–6683 6683