Journal of the American Chemical Society
Communication
5 offers numerous opportunities for structural modification to
improve enantioselectivities and to extend the utility of this
class of catalysts to other electrophile-initiated cyclizations,
including iodo- and chlorolactonizations. These developments
as well as the use of catalysts related to 5 in key steps in
complex molecule synthesis will be reported in due course.
ASSOCIATED CONTENT
* Supporting Information
■
S
Synthesis of catalyst 5, experimental procedures, character-
ization of new compounds, and X-ray crystal data. This material
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the National Institutes of Health (GM31077) and
the Robert A. Welch Foundation (F-0652) for generous
support of this research. D.H.P. thanks the NIH for a
postdoctoral fellowship (GM096557). We are also grateful to
Dr. Vincent Lynch (The University of Texas) for X-ray
crystallography and Shawn Blumberg (The University of
Texas) for helpful discussions.
Figure 1. Tentative stereochemical model for enantioselective
bromolactonizations catalyzed by 5. (A) Preferred mode for
cyclizations of 6a−e. (B) Preferred mode for cyclizations of 6f−h.
(C) Preferred mode for cyclizations of 9a−c; model for 6-exo
cyclizations of 9e,f is similar.
REFERENCES
■
(1) (a) Ranganathan, S.; Muraleedharan, K. M.; Vaish, N. K.;
Jayaraman, N. Tetrahedron 2004, 60, 5273−5308. (b) Lava, M. S.;
Banerjee, A. K.; Cabrera, E. V. Curr. Org. Chem. 2009, 13, 720−730.
(c) Rodriguez, F.; Fananas, F. J. In Handbook of Cyclization Reactions;
Ma, S., Ed; Wiley-VCH: New York, 2010; Vol. 4, pp 951−990.
(2) Gribble, G. W. Chem. Soc. Rev. 1999, 28, 335−346.
carboxyl group orients the substrate relative to the catalyst and
that the substituent on the olefin is directed away from the face
of the binaphthyl scaffold in a way that minimizes torsional
strain within the substrate and steric interactions with the
catalyst. The bromonium ion is presumably then stabilized by
interaction with the amidine moiety. Our preliminary analysis
suggests that the amidine may be an important stereochemical
control element in these reactions, although the 3-phenyl group
does appear to help by compressing the substrate toward the
amidine moiety. In support of this hypothesis, we performed a
test experiment and found that the norphenyl analogue of 5
catalyzed the bromolactonization of 9a to give 10a with
somewhat lower (81:19 er) enantioselectivity than 5 (Table 2,
entry a).
In summary, we have developed 5 as a novel bifunctional
catalyst to promote highly efficient and enantioselective
bromolactonizations of an unusually broad array of structurally
distinct, unsaturated acids. Like other known catalysts, 5
promotes highly enantioselective bromolactonizations of 4- and
5-aryl-4-pentenoic acids, but unlike those catalysts, it induces
the bromolactonizations of 5-alkyl-4(Z)-pentenoic acids via 5-
exo cyclizations to give lactones in which new carbon−bromine
bonds have been formed at stereogenic centers with high
enantiomeric ratios. Bromolactonizations of trisubstituted
olefinic acids that proceed via 5- and 6-exo cyclizations occur
with good enantioselectivity. We also disclose the first example
of the desymmetrization of a prochiral dienoic acid by a
catalytic, enantioselective bromolactonization. Although the
enantiomeric ratios observed for the bromolactonizations of
more demanding substrates is modest, the chiral framework of
(3) For recent examples of enantioselective halolactonizations, see:
(a) Ning, Z.; Jin, R.; Ding, J.; Gao, L. Synlett 2009, 2291−2294.
(b) Whitehead, D. C.; Yousefi, R.; Jaganathan, A.; Borhan, B. J. Am.
Chem. Soc. 2010, 132, 3298−3300. (c) Zhang, W.; Zheng, S.; Liu, N.;
Werness, J. B.; Guzei, I. A.; Tang, W. J. Am. Chem. Soc. 2010, 132,
3664−3665. (d) Veitch, G. E.; Jacobsen, E. N. Angew. Chem., Int. Ed.
2010, 49, 7332−7335. (e) Murai, K.; Matsushita, T.; Nakamura, A.;
Fukushima, S.; Shimura, M.; Fujioka, H. Angew. Chem., Int. Ed. 2010,
49, 9174−9177. (f) Zhou, L.; Tan, C. K.; Jiang, X.; Chen, F.; Yeung, Y.
J. Am. Chem. Soc. 2010, 132, 15474−15476. (g) Tan, C. K.; Zhou, L.;
Yeung, Y. Org. Lett. 2011, 13, 2738−2741. (h) Tan, C. T.; Le, C.;
Yeung, Y. Chem. Commun. 2012, 48, 5793−5795. (i) Dobish, M. C.;
Johnston, J. N. J. Am. Chem. Soc. 2012, 134, 6068−6071. (j) Zhang,
W.; Liu, N.; Schienebeck, C. M.; Decloux, K.; Zheng, S.; Werness, J.
B.; Tang, W. Chem.Eur. J. 2012, 18, 7296−7305. (k) Murai, K.;
Nakamura, A.; Matsushita, T.; Shimura, M.; Fujioka, H. Chem.Eur. J.
2012, 18, 8448−8453. (l) Jiang, X.; Tan, C. K.; Zhou, L.; Yueng, Y.
Angew. Chem., Int. Ed. 2012, DOI: 10.1002/anie.201202079.
(4) For reviews of enantioselective halocyclizations, see: (a) Chen,
G.; Ma, S. Angew. Chem., Int. Ed. 2010, 49, 8306−8308. (b) Tan, C. K.;
Zhou, L.; Yeung, Y. Synlett 2011, 1335−1339. (c) Snyder, S. A.;
Treitler, D. S.; Brucks, A. P. Aldrichimica Acta 2011, 44, 27−40.
(5) (a) Brown, R. S. Acc. Chem. Res. 1997, 30, 131−137.
(b) Denmark, S. E.; Burk, M. T.; Hoover, A. J. J. Am. Chem. Soc.
2010, 132, 1232−1233. (c) Denmark, S. E.; Burk, M. T. Proc. Natl.
Acad. Sci. U.S.A. 2010, 107, 20655−20660.
(6) (a) Huang, D.; Wang, H.; Xue, F.; Guan, H.; Li, L.; Peng, X.; Shi,
Y. Org. Lett. 2011, 13, 6350−6353. (b) Denmark, S. E.; Burk, M. T.
Org. Lett. 2012, 14, 256−259. (c) Hennecke, U.; Muller, C. H.;
Frohlich, R. Org. Lett. 2011, 13, 860−863.
11130
dx.doi.org/10.1021/ja305117m | J. Am. Chem. Soc. 2012, 134, 11128−11131