C
D. Csókás, R. W. Bates
Letter
Synlett
Table 1 Diastereoselective Allylation of Aldehyde 10
Entry
Catalyst/reagent
Allylating reagent
Temp
(°C)
Time
(h)
Conversion
(%)
Yield
Diastereoselectivity
(%, combined) 11a:11b
1
2
3
4
5
6
7
8
Barbier: Zn, NH4Cl
Barbier: In, AcOH
TiCl4
allyl bromide
allyl bromide
tetraallyltin
RT
ON
ON
0.25
ON
ON
3
100
100
dec.
100
100
100
100
70
84
–
0.5:1
0.4:1
–
–20
0 to RT
0 to RT
0 to RT
–40
–
TiF4 (10 mol%), (R)-BINOL
TiF4 (10 mol%), (R)-BINOL
Ti(Oi-Pr)4, (R)-BINOL
Ti(Oi-Pr)4, (S)-BINOL
allyltrimethylsilane
tetraallyltin
–
0.6:1
0.6:1
0.6:1
0.6:1
8:1
–
tetraallyltin
92
92
62
tetraallyltin
–40
5
(R)-BINAP, [Ir(COD)Cl]2,
4-Cl-3-NO2-BzOH, Cs2CO3
allyl acetate
100
27.5
9
(S)-BINAP, [Ir(COD)Cl]2,
4-Cl-3-NO2-BzOH, Cs2CO3
allyl acetate
100
14
80
–
0.4:1
The 1H NMR spectra of the synthetic lactones 1a and 1b
showed only small differences in the 6.0–7.5 ppm and 3.5–
4.8 ppm regions. Comparison of either of the synthetic iso-
mers with the data reported for the natural product1 shows
a considerable similarity in the 6.0–7.5 ppm region, but a
number of very distinct differences in the region of 3.6–4.8
ppm. This region corresponds to the signals for the protons
α to the oxygen atoms.12 This is entirely consistent with the
proposal of Pill et al.4 that the natural product differs in the
stereochemistry of the tetrahydropyran ring, particularly
that it has 2,6-trans, rather than 2,6-cis stereochemistry.
These differences clearly confirm that the structure origi-
nally assigned to the natural product is incorrect. This re-
sult provides final confirmation of the structural reassign-
ment by Pilli et al. and further illustration of how the oxa-
Michael addition provides a facile and highly stereoselec-
tive route to cis-tetrahydropyrans.
(2) For some recent examples from this laboratory, see: (a) Bates, R.
W.; Wang, K.; Zhou, G.; Kang, D. Z. Synlett 2015, 26, 751.
(b) Bates, R. W.; Lek, T. G. Synthesis 2014, 46, 1731. (c) Bates, R.
W.; Song, P. Synthesis 2010, 2935.
(3) For reviews, see: (a) Nasir, N. M.; Ermanis, K.; Clarke, P. A. Org.
Biomol. Chem. 2012, 12, 3323. (b) Fuwa, H. Heterocycles 2012,
86, 1255. (c) Nising, C. F.; Bräse, S. Chem. Soc. Rev. 2012, 41, 988.
(d) Larossa, I.; Romea, P.; Urpí, F. Tetrahedron 2008, 64, 2683.
(e) Clarke, P. A.; Santos, S. Eur. J. Org. Chem. 2006, 2045. For a
partial review, see: (f) Hu, J.; Bian, M.; Ding, H. Tetrahedron Lett.
2016, 57, 5519.
(4) Della-Felice, F.; Sarotti, A. M.; Pilli, R. A. J. Org. Chem. 2017, 82,
9191.
(5) For a discussion of recent trends in structural revision, see:
Chhetri, B. K.; Lavoie, S.; Sweeney-Jones, A. M.; Kubanek, J. Nat.
Prod. Rep. 2018, 35, 514.
(6) Crimmins, M. T.; Christie, H. S.; Hughes, C. O. Org. Synth. 2011,
88, 364.
(7) Yadav, J. S.; Ganganna, B.; Bhunia, D. C. Synthesis 2012, 44, 1365.
(8) Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K. J. Org.
Chem. 2001, 66, 894.
(9) Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc.
1988, 110, 3560.
Funding Information
(10) Only a trace of cinnamaldehyde could be detected in the reac-
tion mixture.
We thank Nanyang Technological University for support of this work.
()
(11) For another example of tandem deprotection–cyclisation, see:
Paterson, I.; Haslett, G. W. Org. Lett. 2013, 15, 1338.
(12) See Supporting Information for more details.
(13) For examples, see: Podlech, J.; Maier, T. C. Synthesis 2003, 633;
for an additional example, see ref. 2b.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orti
n
gInformati
o
n
(14) Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am. Chem. Soc. 1993, 115,
8467.
(15) Wang, G.; Krische, M. J. J. Am. Chem. Soc. 2016, 138, 8088.
References
(1) Yang, B.-Y.; Kong, L.-Y.; Wang, X.-B.; Zhang, Y.-M.; Li, R.-J.; Yang,
M.-H.; Luo, J.-G. J. Nat. Prod. 2016, 79, 196.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2018, 29, A–C