ORGANIC
LETTERS
Pd(II)-Catalyzed Primary-C(sp3)ꢀH
2012
Vol. 14, No. 14
3724–3727
Acyloxylation at Room Temperature
Raja K. Rit, M. Ramu Yadav, and Akhila K. Sahoo*
School of Chemistry, University of Hyderabad, Hyderabad, India
akhilchemistry12@gmail.com; akssc@uohyd.ernet.in
Received June 7, 2012
ABSTRACT
With the aid of a novel S-methyl-S-2-pyridyl-sulfoximine (MPyS) directing group (DG), the unactivated primary β-C(sp3)ꢀH bond of MPyS-N-
amides oxidizes at room temperature. The catalytic conditions are applicable to the diacetoxylation of primary β,β0-C(sp3)ꢀH bonds, and the
carboxylic acid solvent is pivotal in the formation of the CꢀO bond. The MPyS-DG cleaves from the oxidation products and is recovered. This
method provides convenient access to R,R0-disubstituted-β-hydroxycarboxylic acids.
Transition-metal-catalyzed, directing-group (DG) as-
sisted oxidation of an unactivated C(sp3)ꢀH bond has
emerged as an elegant and powerful tool for the construc-
tion of chemo- and regioselective CꢀO bonds in aliphatic
chains.1 This unique strategy allows the creation of a hydroxy
functional group within a complex molecule, therefore giving
it broad application in synthetic chemistry.2 However, owing
to the high bond dissociation energy of the C(sp3)ꢀH bond
and lack of π-participation, direct oxidation of an unacti-
vated alkane CꢀH bond is a challenging problem.1b Among
the known processes for CꢀH bond oxidation,3ꢀ5 the
inherently reactive and relatively weaker alkane CꢀH bonds
are more amenable to oxidation.6 Sanford and co-workers
demonstrated an elegant approach for the transformable
oximes or pyridine-directed 1°/2°-C(sp3)ꢀH oxidation of
alkanes (eq 1).5e,j The Yu group employed a chiral oxazoline
to accomplish the otherwise challenging diastereoselective
oxidation of a methyl group (eq 1).5i However, the use of
nonremovable and nonmodifiable DGs limit the applications
of alkane CꢀH oxidation methods to synthetic chemistry.7
Therefore, the development of a new synthetic pathway for the
direct oxidation of C(sp3)ꢀH bonds with the aid of reusable
DG under mild catalytic conditions is highly desirable.1b,8
(1) For reviews on sp3 CꢀH functionalization, see: (a) Newhouse, T.;
Baran, P. S. Angew. Chem., Int. Ed. 2011, 50, 3362. (b) Li, H.; Li, B. J.;
Shi, Z. J. Catal. Sci. Technol. 2011, 1, 191. (c) Jazzar, R.; Hitce, J.;
Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem.;Eur. J. 2010,
16, 2654. (d) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q.
Chem. Soc. Rev. 2009, 38, 3242. (e) Dick, A. R.; Sanford, M. S.
Tetrahedron 2006, 62, 2439. (f) Crabtree, R. H. J. Organomet. Chem.
2004, 689, 4083.
(2) For sp3 CꢀH functionalization in organic synthesis, see: (a)
Stang, E. M.; White, M. C. Angew. Chem., Int. Ed. 2011, 50, 2094. (b)
Gutekunst, W. R.; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976 and
references cited therein. (c) McMurray, L.; O’Hara, F.; Gaunt, M. J.
Chem. Soc. Rev. 2011, 40, 1885. (d) Stang, E. M; White, M. C. Nature
2009, 1, 547. (e) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417.
(f) Godula, K.; Sames, D. Science 2006, 312, 67.
(3) For oxidation of an sp3 CꢀH bond using a stoichiometric amount
of Pd-catalyst, see: (a) Carr, K.; Saxton, H. M.; Sutherland, J. K.
J. Chem. Soc., Prekin Trans. 1 1988, 1599. (b) Baldwin, J. E.; Jones,
R. H.; Najera, C.; Yus, M. Tetrahedron 1985, 41, 699. (c) Carr, K.;
Sutherland, J. K. J. Chem. Soc., Chem. Commun. 1984, 1227.
(4) Dangel, B. D.; Johnson, J. A.; Sames, D. J. Am. Chem. Soc. 2001,
123, 8149.
(5) For Pd-catalyzed sp3 CꢀH oxidation, see: (a) He, G.; Zhao, Y.;
Zhang, S.; Lu, C.; Chen, G. J. Am. Chem. Soc. 2012, 134, 3. (b) Novak,
P.; Correa, A.; Donaire, J. G.; Martin, R. Angew. Chem., Int. Ed. 2011,
50, 12236. (c) Hou, X. F.; Wang, Y. N.; Schnetmann, I. G. Organome-
tallics 2011, 30, 6053. (d) Zhang, S.; Luo, F.; Wang, W.; Jia, X.; Hu, M.;
Cheng, J. Tetrahedron Lett. 2010, 51, 3317. (e) Neufeldt, S. R.; Sanford,
M. S. Org. Lett. 2009, 12, 532. (f) Reddy, B. V. S.; Reddy, L. R.; Corey,
E. J. Org. Lett. 2006, 8, 3391. (g) Wang, D. H.; Hao, X. S.; Wu, D. F.; Yu,
J. Q. Org. Lett. 2006, 8, 3387. (h) Lee, J. M.; Chang, S. Tetrahedron Lett.
2006, 47, 1375. (i) Giri, R.; Liang, J.; Lei, J. G.; Li, J. J.; Wang, D. H.;
Chen, X.; Naggar, I. C.; Guo, C.; Foxman, B. M.; Yu, J. Q. Angew.
Chem., Int. Ed. 2005, 44, 7420. (j) Desai, L. V.; Hull, K. L.; Sanford,
M. S. J. Am. Chem. Soc. 2004, 126, 9542.
(6) (a) Gormisky, P. E.; White, M. C. J. Am. Chem. Soc. 2011, 133,
12584. (b) McNeill, E.; Du Bois, J. J. Am. Chem. Soc. 2010, 132, 10202.
(c) Chen, M. S.; White, M. C. Science 2010, 327, 566. (d) Litvinas, N. D.;
Brodsky, B. H.; Du Bois, J. Angew. Chem., Int. Ed. 2009, 48, 4513. (e)
Chen, K.; Richter, J. M.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 7247.
(7) Rousseau, G.; Breit, B. Angew. Chem., Int. Ed. 2011, 50, 2450.
(8) Giri, R.; Chen, X.; Yu, J. Q. Angew. Chem., Int. Ed. 2005, 44,
2112.
r
10.1021/ol301579q
Published on Web 07/05/2012
2012 American Chemical Society