Organic Letters
Letter
coordinate with EA to generate complex B, which exists in
equilibrium with intermediate C. The following intramolecular
1,5-HAT by the 4-cyanopyridine−boryl radical at the C2
position gives intermediate D,17 which is quickly oxidized to
intermediate E together with the formation of HOBnep
byproduct and ligand. Subsequent addition of intermediate E
to the alkynyl sulfone 1a furnishes the final products 2a.
To demonstrate the synthetic utility of this method further,
derivatizations of 3m were performed. Upon treatment of 3m
with NaN3, the substitution reaction was completed in 2 h and
furnished the corresponding product 4 in 92% yield (Scheme
7, eq 1), In addition, in the presence of a base, Na2CO3, 3m
was easily hydrolyzed to give alcohol 5 in 86% yield after 40
min (Scheme 7, eq 2).
ACKNOWLEDGMENTS
■
We are grateful for the financial support provided by the
National Natural Science Foundation of China (21871100),
the Fundamental Research Funds for the Central Universities
(2017KFYXJJ166), Huazhong University of Science and
Technology (HUST), and the Opening Fund of Hubei Key
Laboratory of Bioinorganic Chemistry and Materia Medica
(No. BCMM201805). We also thank the Analytical and
Testing Center of HUST, Analytical and Testing Center of the
School of Chemistry and Chemical Engineering (HUST), for
access to their facilities.
REFERENCES
■
(1) Riemenschneider, W.; Bolt, H. M. Esters, Organic; Wiley-VCH
Verlag GmbH & Co. KGaA: Weinheim, 2005.
Scheme 7. Synthetic Applications of Product 3m
(2) (a) Smith, M. B.; March, J. Advanced Organic Chemistry, 6th ed.;
Wiley: New York, 2007; p 1469. (b) Hauser, C. R.; Hudson, B. E.
Org. React. 1942, 1, 266. (c) Schafer, J. P.; Bloomfield, J. J. Org. React.
1967, 15, 1. (d) Yoshizawa, K.; Toyota, S.; Toda, F. Tetrahedron Lett.
2001, 42, 7983.
(3) For selected examples, see: (a) Carey, F. A.; Sundberg, R. K.
Advanced Organic Chemistry, 5th ed.; Part B, Springer: Heidelberg,
2007; pp 1−31. (b) Hoyle, J. In The Chemistry of Acid Derivatives;
Patai, S., Ed.; Wiley: Chichester, UK, 1992; Vol. 2, pp 615−702.
(c) Desrosiers, J.-N.; Kelly, C. B.; Fandrick, D. R.; Nummy, L.;
Campbell, S. J.; Wei, X.; Sarvestani, M.; Lee, H.; Sienkiewicz, A.;
Sanyal, S.; Zeng, X.; Grinberg, N.; Ma, S.; Song, J. J.; Senanayake, C.
H. Org. Lett. 2014, 16, 1724. (d) Dede, R.; Michaelis, L.; Fuentes, D.;
Yawer, M. A.; Hussain, L.; Fischer, C.; Langer, P. Tetrahedron 2007,
63, 12547. (e) Schmidt, B.; Kunz, O.; Petersen, M. H. J. Org. Chem.
2012, 77, 10897. (f) Iuchi, Y.; Obora, Y.; Ishii, Y. J. Am. Chem. Soc.
2010, 132, 2536. (g) Guo, L.; Ma, X.; Fang, H.; Jia, X.; Huang, Z.
Angew. Chem., Int. Ed. 2015, 54, 4023.
(4) (a) Batanero, B.; Barba, F.; Ranz, F.; Barba, I.; Elinson, M. N.
Tetrahedron 2012, 68, 5979. (b) Majji, G.; Guin, S.; Rout, S. K.;
Behera, A.; Patel, B. K. Chem. Commun. 2014, 50, 12193.
(c) Boojamra, C. G.; Crabtree, R. H.; Ferguson, R. R.; Muedas, C.
A. Tetrahedron Lett. 1989, 30, 5583.
(5) (a) Karty, J. M.; Janaway, G. A.; Brauman, J. I. J. Am. Chem. Soc.
2002, 124, 5213. (b) Tumanov, V. E.; Kromkin, E. A.; Denisov, E. T.
Russ. Chem. Bull. 2002, 51, 1641.
(6) For selected leading reviews and examples, see: (a) Ravelli, D.;
Fagnoni, M.; Fukuyama, T.; Nishikawa, T.; Ryu, I. ACS Catal. 2018,
8, 701. (b) Yu, J.-T.; Pan, C. Chem. Commun. 2016, 52, 2220.
(c) Perry, I. B.; Brewer, T. F.; Sarver, P. J.; Schultz, D. M.; DiRocco,
D. A.; MacMillan, D. W. C. Nature 2018, 560, 70. (d) Wu, X.; Wang,
M.; Huan, L.; Wang, D.; Wang, J.; Zhu, C. Angew. Chem., Int. Ed.
2018, 57, 1640. (e) Xia, Y.; Wang, L.; Studer, A. Angew. Chem., Int.
Ed. 2018, 57, 12940. (f) Quattrini, M. C.; Fujii, S.; Yamada, K.;
Fukuyama, T.; Ravelli, D.; Fagnoni, M.; Ryu, I. Chem. Commun. 2017,
53, 2335. (g) Okada, M.; Fukuyama, T.; Yamada, K.; Ryu, I.; Ravelli,
D.; Fagnoni, M. Chem. Sci. 2014, 5, 2893. (h) Le, C.; Liang, Y.; Evans,
R. W.; Li, X.; MacMillan, D. W. C. Nature 2017, 547, 79. (i) Liu, T.;
Mei, T.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2015, 137, 5871. (j) Kawamata,
Y.; Yan, M.; Liu, Z.; Bao, D.-H.; Chen, J.; Starr, J.; Baran, P. S. J. Am.
Chem. Soc. 2017, 139, 7448. (k) Shu, W.; Nevado, C. Angew. Chem.,
Int. Ed. 2017, 56, 1881. (l) Zhang, J.; Li, Y.; Zhang, F.; Hu, C.; Chen,
Y. Angew. Chem., Int. Ed. 2016, 55, 1872.
In summary, we have developed a site-selective C−H
functionalization of esters through boryl-radical-enabled hydro-
gen abstraction under mild conditions. The substrate scope is
broad, and a variety of functional groups are compatible with
the reaction. A distinguishing feature of this reaction is that the
boryl radical specifically abstracts the hydrogen of the alkoxyl
C−H bond, instead of the α-hydrogen adjacent to the carbonyl
group. This discovery will be a good addition to electrophilic
boron radical chemistry because there was only one case of the
electrophilic ligated boryl radical (NHC−BF2·) reported by
18
́
̂
Curran, Lalevee, and Lacote. Moreover, halogens are
tolerated under the reaction conditions. Further investigations
into the mechanism and applications of this method in organic
synthesis are currently underway in our laboratory and will be
published in due course.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures, characterization data for all
new compounds, and selected NMR spectra and IR
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(7) For reviews, see: (a) Duret, G.; Quinlan, R.; Bisseret, P.;
Blanchard, N. Chem. Sci. 2015, 6, 5366. (b) Curran, D. P.; Solovyev,
̂
A.; Makhlouf Brahmi, M.; Fensterbank, L.; Malacria, M.; Lacote, E.
Angew. Chem., Int. Ed. 2011, 50, 10294. (c) Walton, J. C. Angew.
Chem., Int. Ed. 2009, 48, 1726. (d) Roberts, B. P. Chem. Soc. Rev.
1999, 28, 25. (e) Kaushal, P.; Mok, P. L. H.; Roberts, B. P. J. Chem.
Soc., Perkin Trans. 2 1990, 1663.
Notes
(8) For selected examples, see: (a) Longobardi, L. E.; Zatsepin, P.;
Korol, R.; Liu, L.; Grimme, S.; Stephan, D. W. J. Am. Chem. Soc. 2017,
The authors declare no competing financial interest.
D
Org. Lett. XXXX, XXX, XXX−XXX