132
G. Chatel et al. / Journal of Catalysis 291 (2012) 127–132
4.3. Preparation of chiral Mn porphyrins
reaction mixture was thoroughly washed with an ether/cyclohex-
ane (3:2 v/v) mixture (5 ꢁ 2 mL) to extract the remaining olefin
and the newly formed products. The ether/cyclohexane phase
was analyzed by gas chromatography, based on starting olefin.
4.3.1. Preparation of precursors
aabb-TAPP free base 1 and MeO-substituted binaphthyl diacid
chloride 2 were prepared according to Collman’s method [30].
Appendix A. Supplementary material
4.3.2. aabb-TAPP free base 1 (C44H34N8)
1H NMR (d ppm, CDCl3, 300 MHz): d-2.68 (2 H, s, –NH), 3.55 (8
H, s, NH2), 7.11 (4 H, d, J = 8.0 Hz, phenyl CH), 7.16 (4 H, t, J = 7,4 Hz,
phenyl CH), 7.60 (4 H, t, J = 7.7 Hz, phenyl CH), 7.83 (4 H, d,
J = 7.7 Hz, phenyl CH), 8.90 (8 H, s, CH).
Supplementary data associated with this article can be found, in
References
[1] (a) B. Meunier, Chem. Rev. 92 (1992) 1411;
4.3.3. MeO-substituted binaphthyl diacid 2 (C24H16O6Cl2)
(b) B.S. Lane, K. Burgess, Chem. Rev. 103 (2003) 2457.
[2] E. Rose, B. Andrioletti, S. Zrig, M. Quelquejeu-Ethève, Chem. Soc. Rev. 34 (2005)
573.
[3] H.H. Monfared, V. Aghapoor, M. Ghorbanloo, P. Mayer, Appl. Catal. A: Gen. 372
(2010) 209.
1H NMR (d ppm, CDCl3, 300 MHz): d 3.42 (6 H, s, OCH3), 7.17 (2
H, d, J = 8.4 Hz, CH), 7.45 (2 H, t, J = 7.0 Hz, CH), 7.56 (2 H, t,
J = 7.8 Hz, CH), 8.08 (2 H, d, J = 8.1 Hz, CH), 8.96 (2 H, s, CH).
[4] K.-H. Tong, K.-Y. Wong, T.H. Chan, Org. Lett. 5 (2003) 3423.
[5] H. Yao, D.E. Richardson, J. Am. Chem. Soc. 122 (2000) 3220.
[6] G. Chatel, C. Goux-Henry, N. Kardos, J. Suptil, B. Andrioletti, M. Draye, Ultrason.
Sonochem. 19 (2012) 390.
[7] (a) R. Rogers, K. Seddon, Ionic Liquids as Green Solvents: Progress and
prospects, An American Chemical Society Publication, 2003.;
(b) K. Seddon, Chem. Commun. (2001) 2399;
(c) P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis, Wiley-VCH,
Weinheim, 2008;
(d) J.P. Hallett, T. Welton, Chem. Rev. 111 (2011) 3508;
(e) C.A.M. Afonso, L.C. Branco, N.R. Candeias, P.M.P. Gois, N.M.T. Lourenço,
N.M.M. Mateus, J.N. Rosa, Chem. Commun. (2007) 2669.
[8] P.G. Jessop, Green Chem. 13 (2011) 1391.
4.3.4. aabinaphtyl-b(binapthyl carboxylic acid)-bNH2 strapped Mn
porphyrin 5 and aabb bis-binaphthyl-strapped Mn porphyrin 6
A
mixture of aabb-TAPP 1 (250 mg, 0.37 mmol), MnBr2
(740 mg, 3.45 mmol), 2,6-lutidine (0.75 mL) in freshly distilled
THF (30 mL) was stirred under argon for 36 h at 23 °C. Metallation
was monitored by TLC. This mixture was brought out and stirred
under air for 3 h. The solvent was removed under vacuum and
the residue was dissolved in CH2Cl2 and filtered to remove the
manganese salt. The CH2Cl2 layer was washed with aqueous NH4Cl
solution, dried over MgSO4, and concentrated to give Mn(aabb-
TAPP)Cl 4.
[9] (a) K.M. Docherty, J.C.F. Kulpa, Green Chem. 7 (2005) 185;
(b) S. Stolte, M. Matzke, J. Arning, A. Böschen, W.-R. Pitner, U. Welz- Biermann,
J. Rankea, Green Chem. 9 (2007) 1170;
In absence of air, anhydrous THF (200 mL, freshly distilled from
sodium) and N,N-diethylaniline (0.36 mL) were added to
Mn(aabb-TAPP)Cl 4. The freshly prepared diacid chloride 2 in
THF (12 mL, freshly distilled) was added to the mixture cooled at
ꢀ20 °C by a syringe pump over 1.5 h. The mixture was allowed
to stir at room temperature overnight. THF was removed by rotary
evaporation, and the residue was taken up in CH2Cl2 and washed
with water (3 ꢁ 25 mL) and brine (2 ꢁ 25 mL). After drying with
Na2SO4, the solution was filtered on celite and reduced to dryness.
The residue was separated into two successive chromatography
columns (eluant: CH2Cl2/MeOH = 100/0 to 80/20). The solution
was stirred with NaCl, filtered, and reduced and dried under vac-
uum to give the desired porphyrin 5 (201 mg, 37%) and porphyrin
6 in 7% yield (40 mg).
(c) M. Alvarez-Guerra, A. Irabien, Green Chem. 13 (2011) 1507;
(d) M. Petkovic, K.R. Seddon, L.P. Rebelo, C. Silva Pereira, Chem. Soc. Rev. 40
(2011) 1383;
(e) C. Pretti, C. Chiappe, D. Pieraccini, M. Gregori, F. Abramo, G. Monni, L.
Intorre, Green Chem. 8 (2006) 238;
(f) D. Zhao, Y. Liao, Z. Zhang, Clean 1 (2007) 42;
(g) R.F.M. Frade, C.A.M. Afonso, Hum. Exp. Toxicol. 29 (2010) 1038;
(h) D. Coleman, N. Gathergood, Chem. Soc. Chem. 39 (2010) 600.
[10] C. Capello, U. Fischer, K. Hungerbühler, Green Chem. 9 (2007) 927.
[11] M. Deetlefs, K.R. Seddon, Green Chem. 12 (2010) 17.
[12] (a) P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice, Oxford
University Press, New York, 1998;
(b) P.T. Anastas, M.M. Kirchhoff, Acc. Chem. Res. 35 (2002) 686.
[13] D. Constable, A. Lapkin, Green Chemistry Metrics, Wiley, Chichester, 2008.
[14] M. Deetlefs, K.R. Seddon, Green Chem. 5 (2003) 181.
[15] J.-M. Lévêque, S. Desset, J. Suptil, C. Fachinger, M. Draye, W. Bonrath, G.
Cravotto, Ultrason. Sonochem. 13 (2006) 189.
[16] J.-M. Lévêque, J. Estager, M. Draye, G. Cravotto, L. Boffa, W. Bonrath, Monatsh.
Chem. 138 (2007) 1103.
[17] T. Yim, H.Y. Lee, H.-J. Kim, J. Mun, S. Kim, S.M. Oh, Y.G. Kim, Bull. Korean, Chem.
Soc. 28 (2007) 1567.
[18] A.K. Burrell, R.E. Del Sesto, S.N. Baker, T.M. McCleskeya, G.A. Baker, Green
Chem. 9 (2007) 449.
[19] V. Farmer, T. Welton, Green Chem. 4 (2002) 97.
[20] (a) R.A. Sheldon, Chem. Ind. 23 (1992) 903;
5: MS (ESI+) m/z = 1478.4 (MꢀCl)+; UV–vis (CH2Cl2): kmax/nm
470 (Soret), 570 (Q1) and 759 (Q2) (
500).
e
/L molꢀ1 cmꢀ1 36,400, 4400,
6: HRMS m/z = 1459.3909 (M-Cl)+ for C92H60ClMnN8O8 (ESI+);
UV–vis (CH2Cl2): kmax/nm 480 (Soret), 580 (Q1) and 615 (Q2)
(e
/L molꢀ1 cmꢀ1 38,200, 4800, 3200).
(b) R.A. Sheldon, Green Chem. 9 (2007) 1273.
[21] K. Van Aken, L. Strekowski, L. Patiny, Beilstein J. Org. Chem. 2 (2006) 3.
[22] (a) F. Endres, S. Zein El Abedinw, Phys. Chem. Chem. Phys. 8 (2006) 2101;
(b) T. Yim, H. Yeong Lee, H.-J. Kim, J. Mun, S. Kim, S.M. Oh, Y. Gyu Kim, Bull.
Korean Chem. Soc. 28 (2007) 1567.
[23] L.C. Branco, J.N. Rosa, J.J. Moura Ramos, C.A.M. Afonso, Chem. Eur. J. 8 (2002)
3671.
[24] K. -P Ho, W.-L. Wong, L. Lee, K.-M. Lam, T. Chan, K.-Y. Wong, Chem. Asian J. 5
(2010) 1970.
[25] J.M. Pringle, J. Golding, K. Baranyai, C.M. Forsyth, G.B. Deacon, J.L. Scott, D.R.
MacFarlane, New J. Chem. 27 (2003) 1504.
[26] R.P. Swatloski, J.D. Holbrey, R.D. Rogers, Green Chem. 5 (2003) 361.
[27] V.I. Pârvulescu, C. Hardacre, Chem. Rev. 107 (2007) 2615.
[28] D.J. Flannigan, S.D. Hopkins, K.S. Suslick, J. Organomet. Chem. 690 (2005)
3513.
[29] J.D. Oxley, T. Prozorov, K.S. Suslick, J. Am. Chem. Soc. 125 (2003) 11138.
[30] (a) J.P. Collman, Z. Wang, A. Straumanis, M. Quelquejeu, J. Am. Chem. Soc. 121
(1999) 460;
(b) E. Rose, Q.-Z. Ren, B. Andrioletti, Chem. Eur. J. 10 (2004) 224.
[31] S. Koda, T. Kimura, T. Sakamoto, T. Kondo, H. Mitome, Ultrason. Sonochem. 10
(2003) 14.
4.4. General procedure for alkenes epoxidation under ultrasound
Epoxidation in ionic liquid under ultrasound was carried out as
previously described [6]. Mn(TPP)OAc (1.5
dissolved in the desired ionic liquid (3 mL) under sonication for
2 min. Imidazole (15 mol, 1.0 mg), sodium bicarbonate
lmol, 1.1 mg) was
l
(0.25 mmol, 21 mg, 0.25 equiv), and olefin (1 mmol, 0.10–
0.16 mL, 1 equiv) were added to the solution that was maintained
at 25 °C using a minichiller cooler. Hydrogen peroxide (2.5 mmol,
0.25 mL, 2.5 equiv, 30% solution in water) was added under ultra-
sonic irradiation (3 mm Ø tapered microtip probe, Pelec = 11.5 W,
Pacous.vol = 0.79 W mLꢀ1 in water, determined by calorimetry using
a procedure described in the literature [31]). Additional amounts
of sodium bicarbonate (0.25 mmol, 21 mg, 0.25 equiv) and
hydrogen peroxide (2.5 mmol, 0.25 mL, 2.5 equiv) were added
portion-wise every 15 min over 1 h. After 1 h of sonication, the