3738
P. Ramesh et al. / Tetrahedron Letters 53 (2012) 3735–3738
skeleton. The coupling of acid 5 and alcohol 4 was achieved under
Yamaguchi conditions16 (2,4,6-trichlorobenzoyl chloride–Et3N–
THF then DMAP–toluene) to afford the dienoic ester 3 in 80% yield
References and notes
1. Kittakoop, P.; Punya, J.; Kongsaeree, P.; Lertwerawat, Y.; Jintasirikul, A.;
Tanticharoen, M.; Thebtaranonth, Y. Phytochemistry 1999, 52, 453.
2. Isaka, M.; Tanticharoen, M.; Kongsaree, P.; Thebtaranonth, Y. J. Org. Chem. 2001,
66, 4803.
(Scheme 4). The RCM of compound
3 was attempted with
(10 mol %) Grubbs first generation catalyst in dry CH2Cl2 under re-
flux conditions, but the reaction did not proceed. Reaction of 3 with
Grubb’s second-generation catalyst (10 mol %) in CH2Cl2 at reflux
afforded mixture of E:Z ratio 70:30 (18 and 19) as the sole product
in 70% yield.17,18 The E:Z isomers were separated by column chro-
matography. The geometry of the olefin in 18 was established as ‘E’
from its coupling constants.19 The removal of acetonide and PMB-
protect of groups using trifluoroacetic acid (TFA) in CH2Cl2 afforded
the target molecule Phomolide G (1) and its Z-isomer 20. Deprotec-
tion of the PMB group present in 18 with DDQ in CH2Cl2/water
(9:1) system furnished 21 in 90% yield. The methoxylation of alco-
hol 21 with methyl iodide (MeI) in the presence of NaH followed
by deprotection of acetonide by using TFA in CH2Cl2 afforded the
required Phomolide H (2) in 58% yield (for two steps) (Scheme 4).
Synthetic Phomolide G (1) and Phomolide H (2) exhibited identical
spectral data (IR, 1H NMR, 13C NMR and Mass) to that of the natural
product.4
3. Bok, J. W.; Lermer, L.; Chilton, J.; Klingeman, H. G.; Towers, G. H. N.
Phytochemistry 1999, 51, 891.
4. Li, Y.-Y.; Wang, M.-Z.; Huanga, Y.-J.; Shen, Y.-M. Mycology 2010, 1, 254.
5. (a) Meshram, H. M.; Kumar, D. A.; Goud, P. R. Helv. Chemi. Acta. 2010, 93, 1422;
(b) Reddy, B. C.; Meshram, H. M. Tetrahedron Lett. 2010, 51, 4020; (c) Ramesh,
P.; Meshram, H. M. Tetrahedron Lett. 2011, 52, 2443.
6. Bin, W.; Qingsong, L.; Bohan, J.; Tao, Q.; Sulikowski, G. A. Eur. J. Org. Chem. 2006,
277.
7. lcaraz, L.; Harnett, J. J.; Mioskowski, C.; Martel, J. P.; Shin, D. S.; Falck, J. R.
Tetrahedron Lett. 1994, 35, 5449.
8. (a) Sharpless, K. B.; Katsuki, T. J. Am. Chem. Soc. 1980, 102, 5974; (b) Gao, Y.;
Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am.
Chem. Soc. 1987, 109, 5765; (c) Bonini, C.; Fablo, R. D. Tetrahedron Lett. 1988, 29,
815; (d) Ayad, T.; Gennison, Y.; Baltas, M. Org. Bio. Chem. 2005, 3, 2626.
9. Nicole, H.; Julrgen, N.; Siegfried, B. Org. Lett. 2005, 7, 1227. For synthesis of 10,
we chose commercially available (R)-epichlorohydrin as a starting material.
10. Falck, J. R.; Reddy, L. M.; Byun, K.; Campbell, W. B.; Yi, X. Y. Bioorg. Med. Chem.
Lett. 2007, 17, 2634.
11. Mukaiyama, T.; Arai, H.; Shiina, I. Chem. Lett. 2000, 5, 580.
12. Corey, E. J.; Martaf, A.; Laguzza, B. C. Tetrahedron Lett. 1981, 22, 3339.
13. Yadav, J. S.; Reddy, P. M. K.; Gupta, M. K.; Chary, C. J. Synthesis 2007, 23, 3639.
14. (a) Trost, B. M.; Amans, D.; Seganish, W. M.; Chung, C. K. J. Am. Chem. Soc. 2009,
131, 17087; (b) Kolar, J. J.; Lindgren, B. O. Acta Chem. Scand. 1982, 36, 599; (c)
Dalcanale, E.; Montanari, F. J. Org. Chem. 1986, 51, 567.
15. Dakas, P. Y.; Jogireddy, R.; Valot, G.; Barluenga, S.; Winssinger, N. Chem. Eur. J.
2009, 15, 11490.
16. (a) Inanga, J.; Hirata, K.; Sacki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc.
Jpn. 1979, 52, 1989; (b) Okino, T.; Qi, S.; Matsuda, H.; Murakami, M.;
Yamaguchi, K. J. Nat. Prod. 1997, 60, 158.
17. (a) Mahapatra, T.; Das, T.; Nanda, S. Bulletin of the chemical society of Japan
2011, 84, 511; (b) Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H. J.
Am. Chem. Soc. 2003, 125, 11360; (c) Grubbs, R. H. Tetrahedron 2004, 60, 7117;
(d) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4490;
(e) Schrodi, Y.; Pederson, R. L. Aldrichimica Acta 2007, 40, 45.
PCy3
MesN
Cl
NMes
Ph
Cl
Cl
Ru
Ru
Cl
PCy3
Ph
PCy3
Grubbs 1st generation
Grubbs 2nd generation
18. (a) Mohapatra, D. K.; Ramesh, D. K.; Giardello, M. A.; Chorghade, M. S.; Gurjar,
M. K.; Grubbs, R. H. Tetrahedron Lett. 2007, 48, 2621; (b) Ramana, C. V.;
Khaladkar, T. P.; Chatterjee, S.; Gurjar, M. K. J. Org. Chem. 2008, 73, 3817; (c)
Mohapatra, D. K.; Uttam, D.; Ramesh Naidu, P.; Yadav, J. S. Synlett. 2009, 2129;
(d) Grubbs, R. H.; Miller, S. J.; Fu, G. C. Acc. Chem. Res. 1995, 28, 446; (e) Deiters,
A. S.; Martin, F. Chem. Rev. 2004, 104, 2199.
19. While one of the olefinic proton signal appeared at d 5.40 ppm as a dd (J = 9.82,
15.86 Hz) and the signal due to other double proton appeared at d 5.82 ppm as
a dd (J = 9.82, 15.86 Hz). And the geometry of the olefin in 19 was established
as ‘Z’ from its coupling constants, while one of the olefinic proton signal
appeared at d 5.78 ppm as a dd (J = 2.26, 7.55 Hz) and the signal due to other
double proton appeared at d 5.82 ppm as a dd (J = 2.26, 7.55 Hz).
In conclusion, we described the stereoselective total synthesis
of Phomolide G, H and its Z-isomer (20) via an RCM of the respec-
tive dienoic esters. Phomolide G, H and its Z-isomer was achieved
using inexpensive and commercially available starting material
(R)- epichlorohydrin. The synthesis highlights Sharpless epoxida-
tion and ring closing metathesis (RCM) reactions as key steps.
Acknowledgments
P. R. and B. C. K. R. thank CSIR-UGC for the award of a fellowship
and to Dr. J. S. Yadav, Director IICT, for his support and
encouragement