116
C. del Pozo et al. / Journal of Catalysis 291 (2012) 110–116
(2007) 1226;
As can be seen from Table 4, for both aliphatic and aromatic
(g) D. Imao, S. Fujihara, T. Yamamoto, T. Ohta, Y. Ito, Tetrahedron 61 (2005)
6988;
(h) V. I Tararov, R. Kadyrov, T.H. Riermeierc, A. Borner, Chem. Commun. (2000)
1867;
(i) C.F. Lane, Synthesis (1975) 135;
(j) A.F. Abdel-Magid, K.G. Carson, B.D. Harris, C.A. Maryanoff, R.D. Shah, J. Org.
Chem. 61 (1996) 3849;
(k) M.D. Bomann, I.C. Guch, M. Dimare, J. Org. Chem. 60 (1995) 5995;
(l) S. Bhattacharyya, Synth. Commun. (1997) 4265;
(m) B.C. Ranu, A. Majee, A.J. Sarkar, Org. Chem. 63 (1998) 370;
(n) S. Bhattacharyya, K.A. Neidigh, M.A. Avery, J.C. Williamson, Synlett (1999)
1781;
aldehydes, 2RuMCM-41 is recyclable and can be recovered by sim-
ple filtration in air and reused without significant loss of catalytic
activity (Table 4).
Soluble complexes could be used only once, because they dete-
riorate completely by the end of the first catalytic run, supported-
complexes could be recovered for recycling, and reused retaining
most of their catalytic activity. The activity of the recovered cata-
lyst do not decrease after 4 cycles at least. Analysis of recycled cat-
alyst from the reaction showed that the overall structure was
largely maintained (Table 4, Fig. 4).
(o) I. Saxena, R. Borah, J.C. Sarma, J. Chem. Soc. Perkin Trans. 1 (2000) 503.
[8] (a) M.O. Sydnes, M. Isobe, Tetrahedron Lett. 49 (2008) 1199;
(b) M.O. Sydnes, M. Kuse, M. Isobe, Tetrahedron 64 (2008) 6406.
[9] (a) For similar transformations from other groups using different alkyl sources
and different reducing agents, see the following references: H2 and Raney
nickel as reducing agent and alcohol as alkyl source (the alcohol is oxidized to
the corresponding aldehyde under the reaction conditions), see: Y.-L. Jiang, Y.-
Q. Hu, S.-Q. Feng, J.-S. Wu, Z.-W. Wu, Y.-C. Yuan, J.-M. Liu, Q.-S. Hao, D.-P. Li,
Synth. Commun. 26 (1996) 161;
4. Conclusions
In summary, we have synthesized and immobilized on MCM-41
Ru(II) hydride complexes based on pincer-type pyridine-function-
alized N-heterocyclic carbene ligands and we have developed a
simple and efficient method for the synthesis of N-alkyl amines
via reductive amination using a new readily recyclable hybrid cat-
alyst that combines the catalytic properties of transition-metal
complexes with the architecture of mesoporous solids. The reac-
tion is carried out in the presence of hydrogen by means of a
bifunctional catalyst that chemoselectively performs the hydroge-
nation of the nitro group to the amino group, which subsequently
condensates with the aldehyde on the acid sites of the composite
catalyst and finally the reduction of imine leads to the correspond-
ing amine.
(b) Z. Xiaojian, W. Zuwang, L. Li, W. Guijuan, L. Jiaping, Dyes Pigments 36
(1998) 365;
(c) decaboran as reducing agent and carbonyls as alkyl source, see: J.W. Bae,
Y.J. Cho, S.H. Lee, C.-O.M. Yoon, C.M. Yoon, Chem. Commun. (2000) 1857–1858;
(d) Y.J. Jung, J.W. Bae, E.S. Park, Y.M. Chang, C.M. Yoon, Tetrahedron 59 (2003)
10331;
(e) H2 and Pd/C (10%) as reducing agent and nitriles as alkyl source, see: H.
Sajiki, T. Ikawa, K. Hirota, Org. Lett. 6 (2004) 4977;
(f) H. Sajiki, T. Ikawa, K. Hirota, Org. Process Res. Dev. 9 (2005) 219;
(g) ammonium formate and Pd/C (5%) as reducing agent and nitriles as alkyl
source, see: R. Nacario, S. Kotakonda, D.M.D. Fouchard, L.M.V. Tillekeratne, R.A.
Hudson, Org. Lett. 7 (2005) 471;
(h) D.M.D. Fouchard, L.M.V. Tillekeratne, R.A. Hudson, Synthesis (2005) 17;
(i) polymethylhydrosiloxane and Pd(OH)2/C (20%) as reducing agent and
nitriles as alkyl source, see: C.R. Reddy, K. Vijeender, P.B. Bhusan, P.P. Madhavi,
S. Chandrasekhar, Tetrahedron Lett. 48 (2007) 2765;
Acknowledgment
(j) for
a related methodology where nitro aryls were converted to the
corresponding carbamates (Boc and CO2Et) using Sn/NH4Cl and Boc2O or
ClCO2Et, see: S. Chandrasekhar, Ch. Narsihmulu, V. Jagadeshwar, Synlett (2002)
771.
We thank the Dirección General de Investigación Científica y
Técnica of Spain (Projects MAT2011-29020-C02-02, Consolider-
Ingenio 2010-(CSD-0050-MULTICAT) for financial support.
[10] (a) L.L. Santos, P. Serna, A. Corma, Chem.-Eur. J. 15 (2009) 8196;
(b) M.J. Climent, A. Corma, S. Iborra, L.L. Santos, Chem.-Eur. J. 15 (2009) 8834.
[11] Y. Yamane, X. Liu, A. Hamasaki, T. Ishida, M. Haruta, T. Yokoyama, M.
Tokunaga, Org. Lett. 11 (2009) 5162.
[12] M. Albrecht, G. van Koten, Angew. Chem. Int. Ed. 40 (2001) 3750.
[13] F. Gorla, A. Togni, L.M. Venanzi, A. Albinati, F. Lianza, Organometallics 13
(1994) 1607.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
[14] M. Gagliardo, P.A. Chase, S. Brouwer, G.P.M. van Klink, G. van Koten,
Organometallics 26 (2007) 2219.
[15] (a) N.C. Mehendale, Ch. Bezemer, C.A. van Walree, R.J.M.K. Gebbink, G. van
Koten, J. Mol. Cat. A: Chem. 257 (2006) 167.;
References
(b) N.C. Mehendale, J.R.A. Sietsma, K.P. de Jong, C.A. van Walree, R.J.M.K.
Gebbink, G. van Koten, Adv. Synth. Catal. 349 (2007) 2619;
c) Z. Huang, M. Brookhart, A.S. Goldman, S. Kundu, A. Ray, S.L. Scott, B.C.
Vicente, Adv. Synth. Catal. 351 (2009) 188;
[1] (a) S.J. Broadwater, S.L. Roth, K.E. Price, M. Kobaslija, D.T. McQuade, Org.
Biomol. Chem. 3 (2005) 2899;
(b) L.F. Tietze, Chem. Rev. 96 (1996) 115;
d) A.R. McDonald, H.P. Dijkstra, B.M.J.M. Suijkerbuijk, G.P.M. van Klink, G. van
Koten, Organometallics 28 (2009) 4689.
(c) L.F. Tietze, U. Beifuss, Angew. Chem. Int. Ed. Engl. 32 (1993) 131;
(d) M.J. Climent, A. Corma, S. Iborra, Chem. Rev. 111 (2011) 1072.
[2] N. Ono, The Nitro Group in Organic Synthesis;, Wiley, New York, NY, 2001.
[3] (a) R.S. Downing, P.J. Kunkeler, H. van Bekkum, Catal. Today 37 (1997) 121;
(b) H.-U. Blaser, C. Malan, B. Pugin, F. Spindler, H. Steiner, M. Studer, Adv.
Synth. Catal. 345 (2003) 103;
[16] (a) C. del Pozo, M. Iglesias, F. Sánchez, Organometallics 30 (2011) 2180;
(b) C. del Pozo, A. Corma, M. Iglesias, F. Sánchez, Green Chem. 13 (2011) 2471;
(c) I. Karamé, M. Boualleg, J.-M. Camus, T.K. Maishal, J. Alauzun, J.-M. Basset,
Ch. Copéret, R.J.P. Corriu, E. Jeanneau, A. Mehdi, C. Reyé, L. Veyre, Ch.
Thieuleux, Chem. Eur. J. 15 (2009) 11820.
(c) A. Corma, P. Serna, P. Concepcion, J.J. Calvino, J. Am. Chem. Soc. 130 (2008)
8748;
(d) P.M. Reis, B. Royo, Tetrahedron Lett. 50 (2009) 949.
[17] W. Werner, W. Jungstand, W. Gutsche, K. Wohlrabe, W. Romer, D. Tresselt,
Pharmazie 34 (1979) 394.
[18] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartulli, J.S. Beck, Nature 359 (1992)
710.
[19] (a) J.C. Garrison, W.J. Youngs, Chem. Rev. 105 (2005) 3978;
(b) A.R. Chianese, X.W. Li, M.C. Janzen, J.W. Faller, R.H. Crabtree,
Organometallics 22 (2003) 1663;
[4] R.N. Salvatore, C.H. Yoon, K.W. Jung, Tetrahedron 57 (2001) 7785.
[5] A. Ricci, Modern Amination Methods, Wiley, New York, 2000.
[6] (a) B. Merla, N. Risch, Synthesis XX (2002) 1365;
(b) E.M. Gordon, R.W. Barrett, W. Dower, S.P.A. Fodor, M.A. Gallop, J. Med.
Chem. 37 (1994) 1385;
(c) R.S. Simons, P. Custer, C.A. Tessier, W.J. Youngs, Organometallics 22 (2003)
1979;
(d) H.M.J. Wang, I.J.B. Lin, Organometallics 17 (1998) 972.
[20] M.O. Sydnes, I. Doi, A. Ohishi, M. Kuse, M. Isobe, Chem. Asian J. 3 (2008) 102.
[21] (a) B. Pugin, H. Lendert, F. Spindler, H.U. Blaser, Adv. Synth. Catal. 344 (2002)
974;
(c) D.B. Sharp, in: P.C. Kearney, D.D. Kaufman (Eds.), Herbicides: Chemistry,
Degradation, and Mode of Action, Marcel Dekker, New York, 1988 (Chapter 7).
[7] (a) V.A. T1arasevich, N.G. Kozlov, Russ. Chem. Rev. 68 (1999) 55;
(b) I.V. Micovic, M.D. Ivanovic, D.M. Piatak, V.D. Bojic, Synthesis (1991) 1043;
(c) B.-C. Chen, J.E. Sundeen, P. Guo, M.S. Bednarz, R. Znao, Tetrahedron Lett. 42
(2001) 1245;
(b) C. González-Arellano, A. Corma, M. Iglesias, F. Sánchez, Adv. Synth. Catal.
346 (2004) 1316.
[22] A. Corma, Chem. Rev. 97 (1997) 2373.
(d) T. Suwa, E. Sugiyama, I. Shibata, A. Baba, Synthesis 6 (2000) 789;
(e) O.Y. Lee, K.L. Law, C. Ho, Y.D. Yang, J. Org. Chem. 73 (2008) 8829;
(f) D. Gnanamgari, A. Moores, E. Rajaseelan, R.H. Crabtree, Organometallics 26