C. Fischer, C. Selle, H.-J. Drexler, D. Heller
SHORT COMMUNICATION
Analogue results were obtained by using toluene instead. the literature.[8] To what extent catalyst deactivation has to be
The appropriate molecular structure is presented in Figure 2. considered depends on either the ratio of the stability constants
The corresponding 31P NMR spectrum (31P NMR in CD2Cl2, of arene complexes and active catalyst complexes or, other-
δ = 42.6 ppm; JRh–P = 203.2 Hz) is presented in the Supporting wise, on the ratio of the concentrations of arene and substrate.
Information.
The data in Table 1 show that the relevant distances and
angles in the two complexes are very similar.
Conclusions
In summary it has been shown that, despite their less sta-
bility compared to analogues complexes bearing five-mem-
bered chiral chelating diphosphines, arene complexes [Rh(BI-
Although rhodium arene complexes may be responsible for
lower activity, asymmetric hydrogenations with cationic rho-
dium complexes in aromatic solvents have been described in
NAP)(benzene)]BF4
and
[Rh(BINAP)(methyl-η6-benz-
ene)]BF4 were successfully prepared, isolated and charac-
terized by X-ray analysis.
Supporting Information (see footnote on the first page of
this article): 31P NMR spectra of the title compounds.
References
[1] A. Miyashita, A. Yasuda, H. Takaya, K. Toriumi, R. Noyori, J. Am.
Chem. Soc. 1980, 102, 7932–7934.
[2] a) M. Berthod, G. Mignani, G. Woodward, M. Lemaire, Chem.
Rev. 2005, 105, 1801–1836; b) T. P. Yoon, E. N. Jacobsen, Science
2003, 299, 1691–1693; R. Noyori, Angew. Chem. 2002, 114, 2108–
2123; Angew. Chem. Int. Ed. 2002, 41, 2008–2022 (Nobel lecture).
[3] A. Preetz, H.-J. Drexler, S. Schulz, D. Heller, Tetrahedron: Asym-
metry 2010, 21, 1226–1231.
[4] A. Preetz, C. Fischer, C. Kohrt, H.-J. Drexler, W. Baumann, D.
Heller, Organometallics 2011, 30, 5155–5159.
[5] a) D. Heller, H.-J. Drexler, A. Spannenberg, B. Heller, J. You, W.
Baumann, Angew. Chem. 2002, 114, 814–817; Angew. Chem. Int.
Ed. 2002, 41, 777–780; b) M. J. Burk, F. Bienewald, S. Challenger,
A. Derrick, J. A. Ramsden, J. Org. Chem. 1999, 64, 3290–3298.
[6] J. Halpern, D. P. Riley, A. S. C. Chan, J. J. Pluth, J. Am. Chem.
Soc. 1977, 99, 8055–8057.
Figure 2. Molecular structure of the cation of [Rh(BINAP)(methyl-η6-
benzene)]BF4; ORTEP, 30% probability ellipsoids. Hydrogen atoms
are omitted for clarity. Selected distances and bond angles are summa-
rized in Table 1. CCDC-861326.
[7] M. J. Burk, C. S. Kalberg, A. Pizzano, J. Am. Chem. Soc. 1998,
120, 4345–4353.
[8] a) R. Kuwano, M. Kashiwabara, K. Saito, T. Ito, K. Kaneda, Y.
Ito, Tetrahedron: Asymmetry 2006, 17, 521–535; b) K. Junge, G.
Oehme, A. Monsees, T. Riermeier, U. Dingerdissen, M. Beller, J.
Organomet. Chem. 2003, 675, 91–96; c) G. Zhu, Z. Chen, X.
Zhang, J. Org. Chem. 1999, 64, 6907–6910; d) J. Holz, A. Kless,
S. Borns, S. Trinkhaus, R. Selke, D. Heller, Tetrahedron: Asym-
metry 1995, 6, 1973–1988; e) M. J. Burk, M. F. Gross, J. P. Marti-
nez, J. Am. Chem. Soc. 1995, 117, 9375–9376.
Table 1. Selected distances /Å and bond angles /° of the isolated arene
complexes.
Arene
distance /Å
Rh–P
distance /Å
angle /°
P–Rh–P
Rh–η6C
Benzene
Toluene
2,231–2,241 (1)
2,226–2,234 (2)
2,288–2,367 (3)
2,296–2,361 (4)
89,86 (2)
89,64 (4)
Received: January 13, 2012
Published Online:
2
© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Z. Anorg. Allg. Chem. 2012, 1–3