ORGANIC
LETTERS
2012
Vol. 14, No. 14
3684–3687
Hybrid System of Metal/Brønsted Acid
Relay Catalysis for the Intramolecular
Double Hydroarylation and Cationic
Cyclization of Diyne Diethers and Diamines
Juntae Mo, Dahan Eom, Euichul Lee, and Phil Ho Lee*
Department of Chemistry, Kangwon National University, Chuncheon 200-701,
Republic of Korea
Received June 2, 2012
ABSTRACT
We have developed a hybrid system of metal/Brønsted acid relay catalysis for the intramolecular double hydroarylation and cationic cyclization of
diyne diethers and diamines to give 4,40-bi(2H-chromene), bi(2H-quinoline), and dioxafluoranthenes starting from 2,4-diyne-1,6-diethers and
diamines in one reaction vessel under mild conditions.
Transition metal catalyzed intramolecular hydroaryla-
tion of alkynes, alkenes, and allenes by the addition of an
aryl CꢀH bond across a π-bond has received considerable
attention for its highly useful synthetic applications.1 This
reaction has been demonstrated to be one of the most
effective green chemistry methods because of its ideal atom
economy.2 Since the Pd-catalyzed intramolecular hydro-
arylation of alkynes was first described by Fujiwara,3 a
wide range of transition metal4 and Lewis acid catalyzed5
hydroarylations were reported.6 Recently, we developed
Pt-catalyzed hydroarylation of benzyl allenes through a
(1) (a) Kitamura, T. Eur. J. Org. Chem. 2009, 1111. (b) Harada, H.;
Thalji, R. K.; Bergman, R. G.; Ellman, J. A. J. Org. Chem. 2008, 73,
6772. (c) Tarselli, M. A.; Gagne, M. R. J. Org. Chem. 2008, 73, 2439.
(5) (a) Jean, M.; van de Weghe, P. Tetrahedron Lett. 2011, 52, 3509.
(b) Cacciuttolo, B.; Poulain-Martini, S.; Dunach, E. Eur. J. Org. Chem.
ꢀ
~
(d) Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2007, 9, 4821.
(e) Soriano, E.; Marco-Contelles, J. Organometallics 2006, 25, 4542.
(f) Bandini, M.; Emer, E.; Tommasi, S.; Umani-Ronchi, A. Eur. J. Org.
Chem. 2006, 3527. (g) Nevado, C.; Echavarren, A. M. Chem.;Eur. J.
2005, 11, 3155. (h) Nevado, C.; Echavarren, A. M. Synthesis 2005, 167.
(2) (a) England, D. B.; Padwa, A. Org. Lett. 2008, 10, 3631. (b) Yeh,
M.-C. P.; Tsao, W.-C.; Cheng, S.-T. J. Org. Chem. 2008, 73, 2902. (c)
Ferrer, C.; Amijs, C. H. M.; Echavarren, A. M. Chem.;Eur. J. 2007, 13,
2011, 3710. (c) Komeyama, K.; Igawa, R.; Takaki, K. Chem. Commun.
2010, 1748. (d) Hashimoto, T.; Kutubi, S.; Izumi, T.; Rahman, A.;
Kitamura, T. J. Organomet. Chem. 2011, 696, 99. (e) Xie, K.; Wang, S.;
Li, P.; Li, X.; Yang, Z.; An, X.; Guo, C.-C.; Tan, Z. Tetrahedron Lett.
2010, 51, 4466. (f) Xiao, Y.-P.; Liu, X.-Y.; Che, C.-M. J. Organomet.
Chem. 2009, 694, 494. (g) Zotto, C. D.; Wehbe, J.; Virieux, D.;
Campagne, J.-M. Synlett 2008, 13, 2033. (h) Li, R.; Wang, S. R.; Lu,
W. Org. Lett. 2007, 9, 2219. (i) Yamamoto, H.; Sasaki, I.; Imagawa, H.;
Nishizawa, M. Org. Lett. 2007, 9, 1399. (j) Inoue, H.; Chatani, N.;
Murai, S. J. Org. Chem. 2002, 67, 1414.
ꢀ
ꢀ~
1358. (d) Jimenez-Nunez, E.; Echavarren, A. M. Chem. Commun. 2007,
333. (e) Saito, A.; Kanno, A.; Hanzawa, Y. Angew. Chem., Int. Ed. 2007,
ꢀ
ꢀ
46, 3931. (f) Marion, N.; Dıez-Gonzalez, S.; de Fremont, P.; Noble,
A. R.; Nolan, S. P. Angew. Chem., Int. Ed. 2006, 45, 3647. (g) Ferrer, C.;
Echavarren, A. M. Angew. Chem., Int. Ed. 2006, 45, 1105. (h) Trost,
B. M. Science 1991, 254, 1471. (i) Trost, B. M. Angew. Chem., Int. Ed.
1995, 34, 259.
(6) (a) Shibuya, T.; Shibata, Y.; Noguchi, K.; Tanaka, K. Angew.
Chem., Int. Ed. 2011, 50, 3963. (b) Niggemann, M.; Bisek, N. Chem.;
Eur. J. 2010, 16, 11246. (c) Chernyak, N.; Gevorgyan, V. Adv. Synth.
ꢀ
Catal. 2009, 351, 1101. (d) Weber, D.; Gagne, M. R. Org. Lett. 2009, 11,
4962. (e) Jiang, T.-S.; Tang, R.-Y.; Zhang, X.-G.; Li, X.-H.; Li, J.-H.
J. Org. Chem. 2009, 74, 8834. (f) Tang, D.-J.; Tang, B.-X.; Li, J.-H.
J. Org. Chem. 2009, 74, 6749. (g) Menon, R. S.; Findlay, A. D.;
Bissember, A. C.; Banwell, M. G. J. Org. Chem. 2009, 74, 8901. (h)
(3) (a) Jia, C.; Piao, D.; Oyamada, J.; Lu, W.; Kitamura, T.;
Fujiwara, Y. Science 2000, 287, 1992. (b) Jia, C.; Piao, D.; Kitamura,
T.; Fujiwara, Y. J. Org. Chem. 2000, 65, 7516.
ꢀ
(4) (a) Youn, S. W.; Pastine, S. J.; Sames, D. Org. Lett. 2004, 6, 581.
Webber, D.; Tarselli, M. A.; Gagne, M. R. Angew. Chem., Int. Ed. 2009,
€
(b) Mamane, V.; Hannen, P.; Furstner, A. Chem.;Eur. J. 2004, 10, 4556.
48, 5733. (i) Chernyak, N.; Gevorgyan, V. J. Am. Chem. Soc. 2008, 130,
5636. (j) Bajracharya, G. B.; Pahadi, N. K.; Gridnev, I. D.; Yamamoto,
Y. J. Org. Chem. 2006, 71, 6204. (k) Zhang, Z.; Liu, C.; Kinder, R. E.;
Han, X.; Qian, H.; Widenhoefer, R. A. J. Am. Chem. Soc. 2006, 128,
9066. (l) Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2004, 126, 10204.
(m) Thalji, R. K.; Ahrendt, K. A.; Bergman, R. G.; Ellman, J. A. J. Am.
Chem. Soc. 2001, 123, 9692.
(c) Shi, Z.; He, C. J. Org. Chem. 2004, 69, 3669. (d) Nishizawa, M.; Takao,
H.; Yadav, V. K.; Imagawa, H.; Sugihara, T. Org. Lett. 2003, 5, 4563. (e) Li,
Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239. (f) Li, H.-J.; Guillot, R.;
€
Gandon, V. J. Org. Chem. 2010, 75, 8435. (g) Furstner, A.; Mamane, V.
Chem. Commun. 2003, 2112. (h) Reetz, M. T.; Sommer, K. Eur. J. Org.
€
Chem. 2003,3485. (i) Furstner, A.; Mamane, V. J. Org. Chem. 2002,67, 6264.
r
10.1021/ol301522y
Published on Web 06/29/2012
2012 American Chemical Society