Journal of the American Chemical Society
Communication
In summary, we report a highly efficient method for catalytic
reduction of secondary amides to imines and secondary amines
using diethylsilane as reductant. Side products are minimal and
high efficiencies have been achieved. The simple preparation of
the catalysts, mild reaction conditions, simple product isolation,
and tolerance toward many functional groups render this system
an attractive route for accessing secondary amines, imines, and
aldehydes from secondary amides.
Scheme 2. Proposed Mechanism for Iridium-Catalyzed
Reduction of Secondary Amides to N-Silylamines
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures, product characterization, and crys-
tallographic data. This material is available free of charge via the
Complex 6 then catalyzes the addition of a second equivalent of
silane across the imine CN bond to give the N-silyl amine. In
both steps the hydrosilylation is proposed to proceed by
electrophilic addition of “Et2SiH+ ” followed by hydride attack
at carbonyl carbon, supported by competition experiments
showing that the electron-deficient substrate 1g reacts much
slower than 1b (see Supporting Information). Following
hydrosilylations, oxidative addition of Et2SiH2 to the iridium
center regenerates the iridium silyl hydride moiety.
Because of the stepwise nature of the amide reduction and
the large rate difference between the two hydrosilylations, imines
can also be directly accessed by using 0.1 mol% of [Ir(COE)2Cl]2
and exactly 2 equiv of Et2SiH2 at room temperature (Table 3).16
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors have submitted a provisional patent on this work.
ACKNOWLEDGMENTS
■
We gratefully acknowledge the financial support of the NSF as
part of the Center for Enabling New Technologies through
Catalysis (CENTC, Grant No. CHE-0650456).
REFERENCES
■
Table 3. Reduction of Secondary Amides to Imines
(1) (a) Comprehensive Organic Synthesis; Trost, B. M., Fleming, I.,
Eds.; Pergamon: Oxford, U.K., 1991; Vol. 8. (b) Comprehensive Organic
Transformations: A Guide to Functional Group Preparations, 2nd ed.;
Larock, R. C., Ed.; Wiley-VCH: New York, 1999. (c) Modern Reduction
Methods; Andersson, P. G., Munslow, I. J., Eds.; Wiley: New York, 2008.
(2) (a) Homer, R. B.; Johnson, C. D. In Chemistry of Amides; Zabicky,
J., Ed.; Interscience: New York, 1970. (b) Reductions in Organic
Chemistry; Hudlicky, M., Ed.; John Wiley & Sons: New York, 1984.
(c) Addis, D.; Das, S.; Junge, K.; Beller, M. Angew. Chem., Int. Ed.
2011, 50, 6004−6011.
(3) (a) Reductions by the Alumino- and Borohydrides in Organic
Synthesis, 2nd ed.; Seyden-Penne, J., Ed.; Wiley-VCH: New York,
2007. (b) Gribble, G. W. Chem. Soc. Rev. 1998, 27, 395−404. For
examples of reduction of amides with aluminum and boron reagents,
see: (c) Brown, H. C.; Tsukamoto, A. J. Am. Chem. Soc. 1964, 86,
1089−1095. (d) Brown, H. C.; Bigley, D. B.; Arora, S. K.; Yoon, N. M.
J. Am. Chem. Soc. 1970, 92, 7161−7167. (e) Brown, H. C.; Heim, P.
J. Org. Chem. 1973, 38, 912−916.
(4) (a) Barbe, G.; Charette, A. B. J. Am. Chem. Soc. 2008, 130, 18−
19. (b) Pelletier, G.; Bechara, W. S.; Charette, A. B. J. Am. Chem. Soc.
2010, 132, 12817−12819.
(5) (a) Kuwano, R.; Takahashi, M.; Ito, Y. Tetrahedron Lett. 1998, 39,
1017−1020. (b) Igarashi, M.; Fuchikami, T. Tetrahedron Lett. 2001,
42, 1945−1947. (c) Motoyama, H.; Mitsui, K.; Ishida, T.; Nagashima,
H. J. Am. Chem. Soc. 2005, 127, 13150−13151. (d) Hanada, S.;
Tsutsumi, E.; Motoyama, Y.; Nagashima, H. J. Am. Chem. Soc. 2009,
131, 15032−15040. (e) Zhou, S.; Junge, K.; Addis, D.; Das, S.; Beller,
M. Angew. Chem., Int. Ed. 2009, 48, 9507−9510. (f) Sunada, Y.;
Kawakami, H.; Imaoka, T.; Motoyama, Y.; Nagashima, H. Angew.
Chem., Int. Ed. 2009, 48, 9511−9514. (g) Das, S.; Addis, D.; Zhou, S.;
Junge, K.; Beller, M. J. Am. Chem. Soc. 2010, 132, 1770−1771.
(h) Mikami, Y.; Noujima, A.; Mitsudome, T.; Mizugaki, T.; Jitsukawa,
K.; Kaneda, K. Chem.Eur. J. 2011, 17, 1768−1772. (i) Park, S.;
Brookhart, M. J. Am. Chem. Soc. 2012, 134, 640−653.
Reaction conditions: amide (1.0 mmol) in CH2Cl2 (3 mL) with
[Ir(COE)2Cl]2 (1.0 μmol) and Et2SiH2 (2.0 mmol). Reactions were
a
1
run at room temperature. Determined by H NMR. Numbers in
b
parentheses are isolated yields of 2. Reaction run on a 0.1 mmol
substrate scale in 0.35 mL of C6D6.
Interestingly, for amide 1v bearing an ester group, clean reduction
to the imine took place with little hydrosilylation of the ester
carbonyl bond (entry 4).17 Imines can also be conveniently trans-
formed to aldehydes, thus increasing the usefulness of this catalytic
reduction.
(6) (a) Ohta, T.; Kamiya, M.; Nobutomo, M.; Kusui, K.; Furukawa, I.
Bull. Chem. Soc. Jpn. 2005, 78, 1856−1861. (b) Fernandes, A. C.;
Romao, C. C. J. Mol. Catal. A 2006, 253, 96−98. (c) Hanada, S.;
̃
Ishida, T.; Motoyama, Y.; Nagashima, H. J. Org. Chem. 2007, 72,
11306
dx.doi.org/10.1021/ja304547s | J. Am. Chem. Soc. 2012, 134, 11304−11307