Organic Letters
Letter
Notes
Scheme 6. Cooperative Action for Propiolic Acid
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank the National Science Council, Taiwan, for financial
support of this work.
■
REFERENCES
■
(1) (a) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014,
114, 9047. (b) Terada, M. Synthesis 2010, 2010, 1929. (c) Akiyama, T.;
Mori, K. Chem. Rev. 2015, 115, 9277.
(2) (a) Phipps, R. J.; Hamilton, G. L.; Toste, F. D. Nat. Chem. 2012, 4,
603. (b) Zi, W.; Toste, F. D. Chem. Soc. Rev. 2016, 45, 4567. (c) Brak, K.;
Jacobsen, E. N. Angew. Chem., Int. Ed. 2013, 52, 534. (d) Mahlau, M.;
List, B. Angew. Chem., Int. Ed. 2013, 52, 518. (e) Jia, M.; Bandini, M. ACS
Catal. 2015, 5, 1638. (f) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem.
Rev. 2008, 108, 3351.
(3) (a) Bodnar, B. S.; Miller, M. J. Angew. Chem., Int. Ed. 2011, 50,
5630. (b) Yamamoto, Y.; Yamamoto, H. Eur. J. Org. Chem. 2006, 2006,
2031. (c) Vogt, P. F.; Miller, M. J. Tetrahedron 1998, 54, 1317.
(d) Denmark, S. E.; Thorarensen, A. Chem. Rev. 1996, 96, 137.
(4) Carosso, S.; Miller, M. J. Org. Biomol. Chem. 2014, 12, 7445.
(5) Cooperative catalysis typically employs metal catalysts bearing a
functional ligand; see: (a) Kim, D.-S.; Park, W.-J.; Jun, C.-H. Chem. Rev.
2017, 117, 8977. (b) Afewerki, S.; Cordova, A. Chem. Rev. 2016, 116,
13512.
(6) Liu, J.; Skaria, M.; Sharma, P.; Chiang, Y.-W.; Liu, R.-S. Chem. Sci.
2017, 8, 5482.
(7) (a) Switzer, J. A.; Hess, D. C. Expert Rev. Neurother. 2006, 6, 195.
(b) Davidson, M. H. Am. J. Med. 1994, 96, 41.
(8) Liu, J.; Ma, S. Org. Lett. 2013, 15, 5150.
(9) (a) Zacharia, J. T.; Tanaka, T.; Hayashi, M. J. Org. Chem. 2010, 75,
7514. (b) Tempkin, O.; Abel, S.; Chen, C.-P.; Underwood, R.; Prasad,
K.; Chen, K.-M.; Repic, O.; Blacklock, T. J. Tetrahedron 1997, 53, 10659.
(10) Acid-catalyzed rearrangement of cyclic nitroxy species:
(a) Kulandai Raj, A. S.; Kale, B. S.; Mokar, B. D.; Liu, R.-S. Org. Lett.
2017, 19, 5340. (b) Sharma, P.; Liu, R.-S. Org. Lett. 2016, 18, 412.
(c) Ghorpade, S.; Jadhav, P. D.; Liu, R.-S. Chem. - Eur. J. 2016, 22, 2915.
(d) Sharma, P.; Liu, R.-S. Chem. - Eur. J. 2016, 22, 15881. (e) Kawade, R.
K.; Tseng, C.-C.; Liu, R.-S. Chem. - Eur. J. 2014, 20, 13927.
(11) For unsaturated six-membered nitroxy species, see: Sukhorukov,
A. Y.; Ioffe, S. L. Chem. Rev. 2011, 111, 5004.
(12) This ring cleavage was well documented for other nitroxy species;
see refs 10 and 11 and selected examples: (a) Ioffe, S. L.; Lyapkalo, I. M.;
Tishkov, A. A.; Danilenko, V. M.; Strelenko, Y. A.; Tartakovsky, V. A.
Tetrahedron 1997, 53, 13085. (b) Gygax, P.; Das Gupta, T. K.;
Eschenmoser, A. Helv. Chim. Acta 1972, 55, 2205. (c) Shatzmiller, S.;
Shalom, E. Liebigs Ann. Chem. 1983, 1983, 897. (d) Goldberg, I.; Saad,
D.; Shalom, E.; Shatzmiller, S. J. Org. Chem. 1982, 47, 2192.
(13) For the aza-Nazarov cyclizations, see: (a) Klumpp, D. A.; Zhang,
Y.; O’Connor, M. J.; Esteves, P. M.; de Almeida, L. S. Org. Lett. 2007, 9,
3085. (b) Ma, Z.-X.; He, S.; Song, W.; Hsung, R. P. Org. Lett. 2012, 14,
5736. (c) Zhou, A.-H.; He, Q.; Shu, C.; Yu, Y.-F.; Liu, S.; Zhao, T.;
Zhang, W.; Lu, X.; Ye, L.-W. Chem. Sci. 2015, 6, 1265. (d) Sahani, R. L.;
Liu, R.-S. Angew. Chem., Int. Ed. 2017, 56, 12736. (e) Pawar, S. K.;
Sahani, R. L.; Liu, R.-S. Chem. - Eur. J. 2015, 21, 10843.
that the weakly O-bound propiolic acid D abstracts one O−CH2
proton, whereas another propiolic acid delivers a proton to the
PhC carbon, affording a hypothetical 2H-1,2-oxazine species E
that remains unknown.11 A 6π retro-electrocyclization12 of
highly unstable species E generates 4-imino-2-en-1-al species F
that undergoes protonation to yield azapentadienyl cations G or
G′. The C(3)-methyl of species G′ can undergo a deuterium
exchange via intermediate H. A final aza-Nazarov cyclization13 of
cation G or G′ affords pyrrole product J and, ultimately, the
observed product 6a. According to this reaction sequence, the
deuterium content of compound 6a follows the decreasing order
D > D′′ > D′′′, compatible with our observed data of species d-
6a.
In summary, we have successfully developed three molecular
rearrangements of 3-alkylidene-2H-1,2-oxazines using HOTf,
silica gel and propiolic acid, affording N-phenyl pyran-3(6H)-
imine 4, pyrrolidin-2-one 6, and Z-configured 3-(1H-indol-2-
yl)prop-2-en-1-ol 5, respectively. Our experimental data suggest
that the reactions with HOTf represent a typical acid catalysis,
enabling a N−O cleavage of cyclic nitroxy species. Silica enables a
distinct rearrangement with its surface acidic sites to increase the
electrophilicity of the nitroxy oxygen. The reaction with propiolic
acid involves a synergetic action of H+ and X−.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental details and spectral data of all compounds
Accession Codes
graphic data for this paper. These data can be obtained free of
Crystallographic Data Centre, 12 Union Road, Cambridge CB2
1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
D
Org. Lett. XXXX, XXX, XXX−XXX