4 (a) M. N. Higley, J. M. Pollino, E. Hollembeak and M. Weck,
Chem.–Eur. J., 2005, 11, 2946–2953; (b) R. Hoogenboom,
M. A. R. Meier and U. S. Schubert, Macromol. Rapid Commun.,
2003, 24, 15–32; (c) H. Otsuka, K. Aotani, Y. Higaki and A. Takahara,
J. Am. Chem. Soc., 2003, 125, 4064–4065; (d) S. Barik and W. G. Skene,
Macromolecules, 2010, 43, 10435–10441; (e) K. Sumida, D. L. Rogow,
J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. H. Bae
and J. R. Long, Chem. Rev., 2012, 112, 724–781; (f) S. Park, D. H. Lee,
J. Xu, B. Kim, S. W. Hong, U. Jeong, T. Xu and T. P. Russell, Science,
2009, 323, 1030–1033.
5 We found a very realistic citation of Motoo Kimura used by
Miroslav Radman in his lectures related to evolutional theories:
‘‘Evolution is the survival of the luckiest rather than survival of the
fittest’’. ‘‘The question is how to be lucky?’’.
Fig. 3 Schematic representation of morphology of (a) block-copolymer
systems using nanoscopic hard and soft segments and of (b) dynameric
systems using self-assembled hard and soft molecular components resulting
in the precise control of the size of addressable diffusional domains, toward
ultradense macroscopic block co-dynamers.
6 (a) M. Michau, M. Barboiu, R. Caraballo, C. Arnal-Herault, P. Periat,
´
A. van der Lee and A. Pasc, Chem.–Eur. J., 2008, 14, 1776–1783;
(b) A. Cazacu, C. Tong, A. van der Lee, T. M. Fyles and M. Barboiu,
J. Am. Chem. Soc., 2006, 128, 9541–9548; (c) M. Barboiu, S. Cerneaux,
A. van der Lee and G. Vaughan, J. Am. Chem. Soc., 2004, 126,
non-diffusional behaviors of P4 is related to the strong increase
in the initial permeability of P4 (Fig. 2a), while its selectivity is
decreasing (Fig. 2b). This can be mainly attributed to high gas
diffusivity through P3 domains and not to an increase in
solubility of P4 domains of increased CO2-philic character.
In conclusion, double dynameric membranes taking advantage
of both supramolecular hard and macromolecular permeable soft
domains can be rationally designed and synthesized for selective
separation of the CO2. The CO2 permeability and the selectivity
strongly increase when supramolecular bisureido-hard segments
(A)n such as reversible ribbon-type connectors are used instead of
isophthalaldehyde non-structuring core connectors. These ribbons
reinforce and mutually orient the macromonomeric phases in a
more significant manner than the polymeric blends. The use of
components reversibly connected at the molecular scale would
finely control the density and dimensional mutual distribution of
soft and hard segments within high density domains of enhanced
mass transport properties (Fig. 3).
3545–3550; (d) M. Michau, R. Caraballo, C. Arnal-Herault and
´
M. Barboiu, J. Membr. Sci., 2008, 321, 22–30; (e) M. Michau and
M. Barboiu, J. Mater. Chem., 2009, 19, 6124–6131; (f) S. Mihai,
A. Cazacu, C. Arnal-Herault, G. Nasr, A. Meffre, A. van der Lee
and M. Barboiu, New J. Chem., 2009, 33, 2335–2343; (g) C. Arnal-
Herault, M. Michau, A. Pasc-Banu and M. Barboiu, Angew. Chem.,
Int. Ed., 2007, 46, 4268–4272; (h) C. Arnal-Herault, A. Pasc-Banu,
M. Michau, D. Cot, E. Petit and M. Barboiu, Angew. Chem., Int. Ed.,
2007, 46, 8409–8413; (i) C. Arnal-Herault, M. Barboiu, A. Pasc,
´
M. Michau, P. Perriat and A. van der Lee, Chem.–Eur. J., 2007, 13,
6792–6800; (j) J. W. Steed, Chem. Soc. Rev., 2010, 39, 3686–3699;
(k) G. O. Lloyd, M.-O. M. Piepenbrock, J. A. Foster, N. Clarke and
J. W. Steed, Soft Matter, 2012, 8, 204–216.
7 (a) S. R. Reijerkerk, M. H. Knoef, K. Nijmeier and M. Wessling,
J. Membr. Sci., 2010, 352, 126–135 and the references therein;
(b) W. Yave, A. Car, S. S. Funari, S. P. Nunes and K. V. Peinemann,
Macromolecules, 2010, 43, 326–333; (c) A. Car, C. Stropnik, W. Yave
and K. V. Peinemann, Adv. Funct. Mater., 2008, 18, 2815–2823.
8 (a) P. M. Budd and N. B. McKeown, Polym. Chem., 2010, 1,
63–68; (b) H. B. Park, C. J. Jung, Y. M. Lee, A. J. Hill, S. J. Pas,
S. T. Mudie, E. Van Wagner, B. D. Freeman and D. J. Coockson,
Science, 2007, 318, 254–258.
Finally, adequate selection of macromonomers makes possible
important structural variations, beneficial for the modulation of the
gas transport properties based on structural behaviours at the
molecular level. This is the case of PDMS type membranes reported
here pushing the limits rendering possible a CO2 permeability of
2685 Barrers, while maintaining a good CO2/N2 selectivity of 13.1.
Within this context the double dynameric membranes reported here
show a strong potential for industrial purposes for which high CO2
permeance (1000 Barrers) and optimal selectivity (i.e. SCO /N = 20)
9 (a) H. Lin, B. D. Freeman, S. Kalakkunnath and D. S. Kalika,
J. Membr. Sci., 2007, 291, 131–139; (b) S. R. Reijerkerk,
K. Nijmeier and M. Wessling, J. Membr. Sci., 2011, 378, 479–484.
10 (a) W. G. Skene and J.-M. Lehn, Proc. Natl. Acad. Sci. U. S. A.,
2002, 99, 8270–8275; (b) J.-M. Lehn, Prog. Polym. Sci., 2005, 30,
814–831; (c) T. Ono, T. Nobori and J.-M. Lehn, Chem. Commun.,
2005, 1522–1524; (d) T. Ono, S. Fujii, T. Nobori and J.-M. Lehn,
Chem. Commun., 2007, 46–48; (e) N. Giuseppone and J.-M. Lehn,
J. Am. Chem. Soc., 2004, 126, 11448–11449; (f) T. Ono, S. Fujii,
T. Nobori and J.-M. Lehn, Chem. Commun., 2007, 4360–4362;
(g) N. Giuseppone, G. Fuks and J.-M. Lehn, Chem.–Eur. J., 2006,
12, 1723–1735; (h) Y. Ruff and J.-M. Lehn, Angew. Chem., Int. Ed.,
2008, 47, 3556–3559; (i) C. F. Chow, S. Fujii and J. M. Lehn,
Angew. Chem., Int. Ed., 2007, 46, 5007–5010; (j) E. Kolomiets and
J. M. Lehn, Chem. Commun., 2005, 1519–1521.
11 (a) G. Nasr, T. Macron, A. Giles, Z. Mouline and M. Barboiu,
Chem. Commun., 2012, 48, 6827–6829; (b) J. Nasr, M. Barboiu,
T. Ono, S. Fujii and J. M. Lehn, J. Membr. Sci., 2008, 321, 8–14.
12 (a) Y. Le Duc, M. Michau, A. Gilles, V. Gence, Y.-M. Legrand,
A. van der Lee, S. Tingry and M. Barboiu, Angew. Chem., Int. Ed.,
2011, 50, 11366–11372; (b) A. Cazacu, Y. M. Legrand, A. Pasc,
G. Nasr, A. van der Lee, E. Mahon and M. Barboiu, Proc. Natl.
Acad. Sci. U. S. A., 2009, 106, 8117–8122.
2
2
are required.14
This work was conducted as part of DYNANO, PITN-
717 2 projects. We thank Wilfredo Yave for gas permeation
measurements.
Notes and references
1 (a) J.-M. Lehn, Chem. Soc. Rev., 2007, 36, 151–160; (b) E. Moulin,
G. Cormos and N. Giusseppone, Chem. Soc. Rev., 2012, 41,
1031–1049; (c) M. Barboiu and J.-M. Lehn, Proc. Natl. Acad.
Sci. U. S. A., 2002, 99, 5201–5206.
2 (a) Dynamic Combinatorial Chemistry: in Drug Discovery, Bioorganic
Chemistry and Materials Science, ed. B. L. Miller, John Wiley and
Sons, Hoboken, 2010; (b) Dynamic Combinatorial Chemistry, ed.
J. N. H. Reek and S. Otto, Wiley-VCH, Weinheim, 2010;
(c) Constitutional Dynamic Chemistry, Topics in Current Chemistry,
ed. M. Barboiu, vol. 322, Springer Verlag, Berlin, 2012.
13 PEO-type rubbery materials exhibit very low permeability B12
Barrers due to their high crystallinity. PEG crystallinity can be
disrupted in the presence of non-PEG rubbery polymers resulting
in the formation of solubility-selective membranes: H. Lin, E. van
Wagner, R. Raharjo, B. D. Freeman and I. Roman, Adv. Mater.,
2006, 18, 39–44.
14 T. M. Merkel, H. Lin, X. Wei and R. Baker, J. Membr. Sci., 2010,
359, 126–139.
3 M. Barboiu, Chem. Commun., 2010, 46, 7466–7476.
c
7400 Chem. Commun., 2012, 48, 7398–7400
This journal is The Royal Society of Chemistry 2012