6
P.O. Dunstan / Thermochimica Acta 441 (2006) 1–7
Table 7
Auxiliary data and enthalpy changes of the ionic complex formation in the gaseous phase (kJ mol−1
)
Compound
ꢀfH◦
ꢀrH◦
ꢀfIH◦
Br−
−219.07a
(g)
Mn2+
2522.0 0.1b
2751.6 2.3b
2841.7 3.4b
2930.5 1.5b
3054.5 2.1b
2781.0 0.4b
(g)
Fe2+
(g)
Co2+
(g)
Ni2+
(g)
Cu2+
(g)
Zn2+
(g)
[MnBr2(an)2](g)
[FeBr2(an)2](g)
[CoBr2(an)2](g)
[NiBr2(an)2](g)
[CuBr2(an)2](g)
[ZnBr2(an)2](g)
−330
5
5
4
5
−324.9 3.7
−2588
−2736
−2778
−2854
6
6
6
6
−248
−200
−187
−376
−336
−319
4
3
4
−103.7 4.4
−307.5 4.1
−318.5 3.3
−312.7 3.3
−2894.3 5.7
−2824.6 5.1
a
See reference [31].
b
See reference [32].
¯
assumption that the course of the variation of the enthalpy values
is linear in a hypothetical state without the influence of the ligand
field. The stabilization energies are the difference between the
real and the interpolated values. Thus, it is found that the stabi-
lization energies in the ligand field formed by two bromide ions
in the order: Ni(II) 125 kJ mol−1 > Cu(II) 110 kJ mol−1 > Fe(II)
100 kJ mol−1 > Co(II) 90 kJ mol−1. The adducts of Cu(II) bro-
mide, of the same stoichiometry, formed with pyNO [32], ␣-
picoNO [35] and -picoNO [36] have stabilization energies of
107.5, 115 and 129 kJ mol−1, respectively. This means that the
order of stabilization energies of the ligands is: pyNO < an < ␣-
picoNO < -picoNO.
NiBr2 > CuBr2 > MnBr2. Using the D(M N) values, the order is:
FeBr2 > CoBr2 > MnBr2 > NiBr2 > CuBr2 > ZnBr2.
The enthalpies for the process of an hypothetical complex
formation in the gaseous phase from metal(II) ions, bromide
ions and aniline molecules can be evaluated:
M2+(g) + 2Br−(g) + 2an(g) → [MBr2(an)2](g), ꢀfIH◦
(6)
with
ꢀfIH◦ = ꢀfH◦(adduct(g)) − ꢀfH◦(M2+(g)) − 2ꢀfH◦
(Br−(g)) − 2ꢀfH◦(an(g)).
Table 7 lists the values obtained for these enthalpy values.
The environment around the M(II) ions is pseudo-tetrahedral
(two Br ions and two N atoms). The correlation of the ꢀfIH◦
values with the metal atomic number is presented in Fig. 1. It
shows part of the double periodic variation profile. The ꢀfIH◦
values obtained depends on the electronic structure of the central
ion. The course of that relation allows determining graphically
the thermodynamic stabilization energy in the ligand field, on the
References
[1] A.V. Ablov, L.V. Nazarova, Russ. J. Chem. 5 (8) (1960) 842.
[2] A.V. Ablov, Z.P. Burnashava, Russ. J. Inorg. Chem. 5 (3) (1960) 289.
[3] A.V. Ablov, V.Y. Ivanova, Z. Neorg. Khim. 6 (1961) 883.
[4] S.R. Jain, S. Soundararajan, Curr. Sci. (India) 31 (1962) 458.
[5] P. Spacu, V. Voicu, I. Pascaru, J. Chem. Phys. 60 (1963) 308.
[6] S.R. Jain, S. Soundararajan, J. Inorg. Nucl. Chem. 26 (7) (1964) 1255.
[7] D.P.N. Satchell, R.S. Satchell, Trans. Faraday Soc. 61 (6) (1965) 1178.
[8] I.S. Ahuja, D.H. Brown, R.H. Nuttall, D.W.A. Sharp, J. Inorg. Nucl.
Chem. 27 (5) (1965) 1105.
[9] K.R. Manolov, Z. Neorg. Khim. 11 (3) (1966) 684.
[10] I.S. Ahuja, Indian J. Chem. 7 (1969) 509.
[11] H.A. Flaschka, EDTA Titrations: An Introduction to Theory and Prac-
tice, second ed., Pergamon Press, London, 1964, pp. 80–82, 87–88.
[12] I.M. Koltoff, E.B. Sandall, Tratado de Qu´ımica Anal´ıtica Cuantitativa,
tercera ed., Libreria y Editorial Nigar S.R.L., Buenos Aires, 1956, p.
371.
[13] P.O. Dunstan, Thermochim. Acta 197 (1992) 201.
[14] E.F. Henrigton, Pure Appl. Chem. 40 (1974) 391.
[15] I.S. Ahuja, P. Rastogi, J. Inorg. Nucl. Chem. 32 (8) (1970) 2665.
[16] P.C. Srivastava, B.J. Ansari, B.K. Banerjee, Indian J. Pure Appl. Phys.
14 (15) (1976) 384.
[17] R. Ripan, Cs. Va´rhelyi, L. Zotyori, Z. Norg. Allg. Chem. 357 (3) (1968)
149.
[18] S. Delgado, M. Moran, V. Fernandez, J. Coord. Chem. 12 (1982) 105.
[19] S. Okeya, H. Yoshimatsu, Y. Hakamura, S. Kawaguchi, Bull. Chem.
Soc. Jpn. 55 (1982) 483.
Fig. 1. Plot of the enthalpy change of complex formation in the gaseous phase
from ionic components against d-electron configuration.
[20] R. Mathis, A.M. Pellizzari, T. Bouisson, M. Revel, Spectrochim. Acta,
Part A 37A (8) (1981) 677.