ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Synthesis of Enantiopure
Dehydropiperidinones from r-Amino
Acids and Alkynes via Azetidin-3-ones
Naoki Ishida, Tatsuya Yuhki, and Masahiro Murakami*
Department of Synthetic Chemistry and Biological Chemistry, Kyoto University,
Katsura, Kyoto 615-8510, Japan
Received June 14, 2012
ABSTRACT
Chiral dehydropiperidinones were synthesized in enantiopure form from R-amino acids and alkynes via azetidin-3-ones.
Substituted piperidines are found in numerous natural
alkaloids, pharmaceuticals, and agrochemicals as a privileged
structural motif.1 Although a wide variety of methods for
their synthesis have been developed,2 new pathways leading
to their enantiopure forms starting from readily available
substances are still in demand. We now report the synthesis
of chiral dehydropiperidinones3 in enantiopure form from
R-amino acids and alkynes via azetidin-3-ones (eq 1).4
carbon single bonds of cyclobutanones to construct com-
plex carbocyclic skeletons. This straightforward synthetic
strategy based on carbonÀcarbon bond activation7 sig-
nificantly improved the step as well as atom economies
of the synthesis of chiral benzobicyclo[2.2.2]octenones.5d
On the basis of these results, we next directed our atten-
tion to azetidin-3-ones, which were readily synthesized
in enantiopure form from R-amino acids according to
Seebach’s method (Scheme 1).8 For example, commer-
cially available N-Boc-(L)-alanine was treated with
ethyl chloroformate/triethylamine, and subsequently
(4) During preparation of this manuscript, Aıssa and Louie indepen-
¨
dently reported a closely related nickel-catalyzed reaction, giving achiral
dehydropiperidinone using nonsubstituted azetidin-3-ones except for
one example: (a) Ho, K. Y. T.; Aıssa, C. Chem.;Eur. J. 2012, 18, 3486.
¨
(b) Kumar, P.; Louie, J. Org. Lett. 2012, 14, 2026.
We previously reported the nickel-5 and rhodium-
catalyzed6 insertion of alkynes and alkenes into carbonÀ
(5) (a) Murakami, M.; Ashida, S.; Matsuda, T. J. Am. Chem. Soc.
2005, 127, 6932. (b) Murakami, M.; Ashida, S.; Matsuda, T. J. Am.
Chem. Soc. 2006, 128, 2166. (c) Ashida, S.; Murakami, M. Chem.
Commun. 2006, 4599. (d) Liu, L; Ishida, N.; Murakami, M. Angew.
Chem., Int. Ed. 2012, 51, 2485.
(6) For rhodium-catalyzed alkene insertion reactions into cyclobuta-
nones, see: (a) Murakami, M.; Itahashi, T.; Ito, Y. J. Am. Chem. Soc. 2002,
124, 13976. (b) Matsuda, T.; Fujimoto, A.; Ishibashi, M.; Murakami, M.
Chem. Lett. 2004, 33, 876.
(1) (a) Escolano, C.; Amat, M.; Bosch, J. Chem.;Eur. J. 2006, 12,
8198. (b) Michael, J. P. Nat. Prod. Rep. 2008, 25, 139. (c) Chemler, S. A.
Curr. Bioact. Compd. 2009, 5, 2.
(2) For recent examples of enantioselective synthesis of substituted
piperidine derivatives, see: (a) Stead, D.; Carbone, G.; O’Brein, P.;
Campos, K. R.; Coldham, I.; Sanderson, A. J. Am. Chem. Soc. 2010,
132, 7260. (b) Beng, T. K.; Gawley, R. E. J. Am. Chem. Soc. 2010, 132,
12216. (c) Cui, L.; Li, C.; Zhang, L. Angew. Chem., Int. Ed. 2010, 49,
9178. (d) Seki, H.; Georg, G. I. J. Am. Chem. Soc. 2010, 132, 15512.
(e) Nadeau, C.; Aly, S.; Belyk, K. J. Am. Chem. Soc. 2011, 133, 2878.
(f) Seel, S.; Thaler, T.; Takatsu, K.; Zhang, C.; Zipse, H.; Straub, B. F.;
Mayer, P.; Knochel, P. J. Am. Chem. Soc. 2011, 133, 4774. (g) Wong, H.;
Garnier-Amblard, E. C.; Liebeskind, L. S. J. Am. Chem. Soc. 2011, 133,
7517 and references cited therein.
(3) For synthesis of dehydropiperidinones, see: (a) Cassldy, M. P.;
Padwa, A. Org. Lett. 2004, 6, 4029. (b) Donohoe, T. J.; Fishlock, L. P.;
Basutto, J. A.; Bower, J. F.; Procopiou, P. A.; Thompson, A. L. Chem.
Commun. 2009, 3008. (c) Husain, I.; Saquib, M.; Bajpai, V.; Kumar, B.;
Shaw, A. K. J. Org. Chem. 2011, 76, 8930.
(7) For reviews on transition-metal-catalyzed cleavage of carbonÀ
carbon bonds: (a) Miura, M.; Satoh, T. Top. Organomet. Chem. 2005,
ꢀ
14, 1. (b) Kondo, T.; Mitsudo, T. Chem. Lett. 2005, 34, 1462. (c) Necas,
D.; Kotora, M. Curr. Org. Chem. 2007, 11, 1566. (d) Park, Y. J.; Park,
J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41, 222. (e) Winter, C.; Krause,
N. Angew. Chem., Int. Ed. 2009, 48, 2460. (f) Seiser, T.; Cramer, N. Org.
Biomol. Chem. 2009, 7, 2835. (g) Murakami, M.; Matsuda, T. Chem.
Commun. 2011, 47, 1100. (h) Aıssa, C. Synthesis 2011, 3389.
¨
(8) (a) Podlech, J.; Seebach, D. Helv. Chim. Acta 1995, 78, 1238.
(b) Wang., J; Hou, Y.; Wu, P. J. Chem. Soc., Perkin Trans. 1 1999, 2277.
r
10.1021/ol3016447
XXXX American Chemical Society