Zhiqin Ji et al. / Bioorg. Med. Chem. Lett. 22 (2012) 4528–4531
4531
Table 5
5. Zeng, W. F.; Navaratne, K.; Prayson, R. A.; Weil, R. J. J. Clin. Pathol. 2007, 60, 218.
6. Lee, E. C. Y.; Frolov, A.; Li, R.; Ayala, G.; Greenberg, N. M. Cancer Res. 2006, 66,
4996.
7. Gritsko, T. M.; Coppola, D.; Paciga, J. E.; Yang, L.; Sun, M.; Shelley, S. A.; Fiorica, J.
V.; Nicosia, S. V.; Cheng, J. Q. Clin. Cancer Res. 2003, 9, 1420.
8. Carvajal, R. D.; Tse, A.; Schwartz, G. K. Clin. Cancer Res. 2006, 12, 6869.
9. Keen, N.; Taylor, S. Nat. Rev. Cancer 2004, 4, 927.
10. Fancelli, D.; Moll, J. Expert Opin. Ther. Patents 2005, 15, 1169.
11. Bebbington, D.; Binch, H.; Charrier, J.-D.; Everitt, S.; Fraysse, D.; Golec, J.; Kay,
D.; Knegtel, R.; Mak, C.; Mazzei, F.; Miller, A.; Mortimore, M.; O’Donnell, M.;
Patel, S.; Pierard, F.; Pinder, J.; Pollard, J.; Ramaya, S.; Robinson, D.; Rutherford,
A.; Studley, J.; Westcott, J. Bioorg. Med. Chem. Lett. 2009, 19, 3586.
12. Mortlock, A. A.; Foote, K. M.; Heron, N. M.; Jung, F. H.; Pasquet, G.; Lohmann, J.-
J. M.; Warin, N.; Renaud, F.; Savi, C. D.; Roberts, N. J.; Johnson, T.; Dousson, C. B.;
Hill, G. B.; Perkins, D.; Hatter, G.; Wilkinson, R. W.; Wedge, S. R.; Heaton, S. P.;
Odedra, R.; Keen, N. J.; Crafter, C.; Brown, E.; Thompson, K.; Brightwell, S.;
Khatri, L.; Brady, M. C.; Kearney, S.; McKillop, D.; Rhead, S.; Parry, T.; Green, S. J.
Med. Chem. 2007, 50, 2213.
Kinome selectivity profile of compound 5ga
Kinase
IC50 (nM)
Kinase
IC50 (nM)
Aur A
Aur B
Alk1
Camk4
Chk1
EGFR
Erk2
<3
<3
Jak2
Jak3
KDR
lck
Jnk1
c-Met
Plk4
P38
>10,000
8140
1180
>10,000
>10,000
>10,000
2090
296
1100
5340
>10,000
340
566
>10,000
>10,000
<3
>10,000
>10,000
>10,000
1870
Flt3
Gsk3a
IGF1R
Irak4
Rock2
Src
TrkA
a
Assay was done in the presence of 10 lM ATP.
13. Qi, W.; Cooke, L. S.; Liu, X.; Rimsza, L.; Roe, D. J.; Manziolli, A.; Persky, D. O.;
Miller, T. P.; Mahadevan, D. Biochem. Pharmacol. 2011, 81, 881.
14. Pollard, J. R.; Mortimore, M. J. Med. Chem. 2009, 52, 2629.
Table 6
Mouse pharmacokinetic profiles of selected compounds
15. Carpinelli, P.; Ceruti, R.; Giorgini, M. L.; Capprlla, P.; Gianellini, L.; Croci, V.;
Degrassi, A.; Texido, G.; Rocchetti, M.; Vianello, P.; Rusconi, L.; Storici, P.;
Zugnoni, P.; Arrigoni, C.; Soncini, C.; Alli, C.; Patton, V.; Marsiglio, A.; Ballinari,
D.; Pesenti, E.; Fancelli, D.; Moll, J. Mol. Cancer Ther. 2007, 6, 3158.
16. Oslob, J. D.; Heumann, S. A.; Yu, C. H.; Allen, D. A.; Baskaran, S.; Bui, M.;
Delarosa, E.; Fung, A. D.; Hashash, A.; Hau, J.; Ivy, S.; Jacobs, J. W.; Lew, W.;
Maung, J.; McDowell, R. S.; Ritchie, S.; Romanowski, M. J.; Silverman, J. A.; Yang,
W.; Zhong, M.; Fuchs-Knotts, T. Bioorg. Med. Chem. Lett. 2009, 19, 1409.
17. Prime, M. E.; Courtney, S. M.; Brookfield, F. A.; Marston, R. W.; Walker, V.;
Warne, J.; Boyd, A. E.; Kairies, N. A.; Von der Saal, W.; Limberg, A.; Georges, G.;
Engh, R. A.; Goller, B.; Rueger, P.; Rueth, M. J. Med. Chem. 2011, 54, 312.
18. Kerekes, A. D.; Esposite, S. J.; Doll, R. J.; Tagat, J. R.; Yu, T.; Xiao, Y.; Zhang, Y.;
Prelusky, D. B.; Tevar, S.; Gray, K.; Terracina, G. A.; Lee, S.; Jones, J.; Liu, M.;
Basso, A. D.; Smith, E. B. J. Med. Chem. 2011, 54, 201.
Compd
iv (3 mg/kg)
Cl (L/h kg)
po (10 mg/kg)
AUC (lM h/mL)
F (%)
Vd (L/kg)
td (h)
2j
2k
2l
0.54
0.23
0.96
0.53
0.13
0.39
0.7
1.3
1.7
5
61
8
28
77
31
might provide the basis for the selective binding observed for these
compounds. A more detailed analysis at the atomic level will re-
quire crystallographic studies.
19. VanderPorten, E. C.; Taverna, P.; Hogan, J. N.; Ballinger, M. D.; Flanagan, W. M.;
Fucini, R. V. Mol. Cancer. Ther. 2009, 8, 930.
In general these compounds are highly selective for Aurora
kinases. The selectivity is exemplified by the inhibition profile of
compound 5g against a selected panel of kinases as shown in Table 5.
A number of selected benzoisoxazole amide ureas were evalu-
ated for their mouse pharmacokinetic profiles (Table 6). In general,
these benzoisoxaole amide ureas possess a low plasma clearance
after iv administration and good oral bioavailability, ranging from
28% for 2j to 77% for 2k. Pharmacokinetic evaluation of pyrrolotri-
azines was done employing an oral cassette dosing protocol. Com-
pound 5a–c and 5e were dosed in one cassette at 10 mpk, resulting
20. Rawson, T. E.; Rüth, M.; Blackwood, E.; Burdick, D.; Corson, L.; Dotson, J.;
Drummond, J.; Fields, C.; Georges, G. J.; Goller, B.; Halladay, J.; Hunsaker, T.;
Kleinheinz, T.; Krell, H.-W.; Li, J.; Liang, J.; Limberg, A.; McNutt, A.; Moffat, J.;
Phillips, G.; Ran, Y.; Safina, B.; Ultsch, M.; Walker, L.; Wiesmann, C.; Zhang, B.;
Zhou, A.; Zhu, B.-Y.; Rüger, P.; Cochran, A. G. J. Med. Chem. 2008, 51, 4465.
21. Belanger, D. B.; Curran, P. J.; Hruza, A.; Voigt, J.; Meng, Z.; Mandal, A. K.;
Siddiqui, M. A.; Basso, A. D.; Gray, K. Bioorg. Med. Chem. Lett. 2010, 20, 5170.
22. McClellan, W. J.; Dai, Y.; Abad-Zapatero, C.; Albert, D. H.; Bouska, J. J.; Glaser, K.
B.; Magoc, T. J.; Marcotte, P. A.; Osterling, D. J.; Stewart, K. D.; Davidsen, S. K.;
Michaelides, M. R. Bioorg. Med. Chem. Lett. 2011, 21, 5620.
23. Ji, Z.; Ahmed, A. A.; Albert, D. H.; Bouska, J. J.; Bousquet, P. F.; Cunha, G. A.; Diaz,
G.; Glaser, K. B.; Guo, J.; Harris, C. M.; Li, J.; Marcotte, P. A.; Moskey, M. D.; Oie,
T.; Pease, L.; Soni, N. B.; Stewart, K. D.; Davidsen, S. K.; Michaelides, R. M. J. Med.
Chem. 2008, 51, 1231.
24. Dai, Y.; Hartandi, K.; Ji, Z.; Ahmed, A. A.; Albert, D. H.; Bauch, J. L.; Bouska, J. J.;
Bousquet, P. F.; Cunha, G. A.; Glaser, K. B.; Harris, C. M.; Hickman, D.; Guo, J.; Li,
J.; Marcotte, P. A.; Marsh, K. C.; Moskey, M. D.; Martin, R. L.; Olson, A. M.;
Osterling, D. J.; Pease, L. J.; Soni, N. B.; Stewart, K. D.; Stoll, V. S.; Tapang, P.;
Reuter, D. R.; Davidsen, S. K.; Michaelides, M. R. J. Med. Chem. 2007, 50, 1584.
25. Ghosez, L.; Franc, C.; Denonne, F.; Cuisinier, C.; Touillaux, R. Can. J. Chem. 2001,
79, 1827.
in a good oral exposure AUC of 112, 185, 9.3 and 20.6
respectively.
lM h/mL,
Additionally, compound 2l was evaluated for its in vivo target
modulation through inhibition of Histone 3 phosphorylation in
leukemia engrafted mouse model. 87% inhibition of H3 phosphor-
ylation was observed in 4 h after 50 mpk IP dosing.
Selected compounds were evaluated in vivo in tumor growth
inhibition models. However, the overall safety and efficacy profile
did not compare favorably with other series of inhibitors devel-
oped in our laboratories.30
26. To determine the activity of Aurora A and B kinases, a homogenous time-
resolved fluorescence (HTRF) in vitro kinase assay was used: (a) Mathis, G.
HTRF(R) Technol. J. Biomol. Screen. 1999, 4, 309; (b) Kolb, A. J.; Kaplita, P. V.;
Hayes, D. J.; Park, Y-W; Pernell, C.; Major, J. S.; Mathis, G. Drug Discovery Today
1998, 3, 333.
In summary, we have prepared a series of potent Aurora inhib-
itors based on a heterocycle amide linked diaryl urea motif by suc-
cessfully replacing the previously disclosed thienopyrimidine core
with alternative hinge-binding moieties. The benzoisoxazole, ben-
zoisothiazole and indazole series show potent Aurora B inhibition,
while the pyrrotriazines potently inhibit both Aurora A and B.
Additionally all series, with the exception of the indazoles are po-
tent Aurora B cell inhibitors as measured by their ability to effec-
27. To measure the induction of polyploidy: NCI-H1299 were seeded (4 K/well)
into 96-well culture plates (tissue culture grade, black, flat-clear bottom) and
incubated overnight to produce cell-to-plate adherence. Test drugs at varying
concentrations were added into duplicate wells containing cells and culture
media (RPMI 1640, 10% fetal calf serum) and incubated at 37 °C for 48 h. The
plates were then washed with PBS and the adherent cells fixed by incubating
with 3% formalin for 1 h. After washing four times with PBS, the cells were then
stained with Hoechst and subjected to fluorescent (360i/460e) microscopic
high content analysis to determine the effect of test drug on nuclear size.
Polyploid cells (P4 N) were defined as those having nuclear area >750 l2. Test
drug potency was expressed as the concentration of drug necessary to induce
polyploidy in 15% of cells (EC15) and was calculated from least squares
analysis of the log dose-response.
tively induce polyploidy. Selected benzoisoxazoles display
a
favorable pharmacokinetic profile with good oral biobioavailability
in mice.
28. Hauf, S.; Cole, R. W.; LaTerra, S.; Zimmer, C.; Schnapp, G.; Walter, R.; Heckel. A.,
van Meel. J.; Rieder, C. L.; Peters, J.-M. J. Cell Biol. 2003, 161, 281.
29. Energy minimized structures of compounds 2j and 5g were dockedinto a
homology model of human Aurora B. The model was built using PDB entry
3EFW as template: Cee, V. J. et al Bioorg. Med. Chem. Lett 2009, 19, 424.
30. Curtin, M. L.; Frey, R. R.; H. Heyman, H. R.; Soni, N. B.; Marcotte, P. A.; Pease, L.
J.; Glaser, K. B.; Magoc, T. J.; Tapang, P.; Albert, D. H.; Osterling, D. J.; Olson, A.
M.; Bouska, J. J.; Guan, Z.; Preusser, L. C.; Polakowski, J. S.; Stewart, K. D.; Tse, C.;
Davidsen, S. K.; Michaelides, M. R. Bioorg. Med. Chem. Lett. 2012, 22, 3208.
References and notes
1. Li, J. J.; Li, S. A. Pharmacol. Ther. 2006, 111, 974.
2. Kimura, M.; Matsuda, Y.; Yoshioka, T.; Okano, Y. J. Biol. Chem. 1999, 274, 7334.
3. Andrews, P. D. Oncogene 2005, 24, 5005.
4. Cheung, C. H. A.; Coumar, M. S.; Hsieh, H.-P.; Chang, J.-Y. Expert Opin. Investig.
Drugs 2009, 18, 379.