Compound 2 represents the first aromatic hydrocarbon-fused
quinoidal porphyin and the new synthetic strategy can likely be
applied to the synthesis of other extended quinoidal porphyrins.
DFT calculation predicted their different geometry and electronic
structure. Both compounds showed intense absorption in the
far-red/NIR region and enhanced TPA response compared with
the aromatic porphyrin monomer. An unusual negative-shift of
the first oxidation potential was observed for the highly contorted
molecule 1. Our research provided a preliminary study on a new
type of aromatics-fused quinoidal porphyrin molecules.
J. W. acknowledges the financial support from the BMRC-
NMRC grant (no. 10/1/21/19/642), MOE Tier 2 grant
(MOE2011-T2-2-130) and IMRE Core Funding (IMRE/
10-1P0509). The work at Yonsei Univ. was supported by WCU
(World Class University) programs (R32-2010-10217-0) and an
AFSOR/APARD grant (no. FA2386-09-1-4092). K.-W. H.
acknowledges the financial support from KAUST.
Notes and references
Fig. 4 OPA (black solid line and left vertical axis) and TPA spectra
(blue symbols and right vertical axis) of 1 (a) and 2 (b) in CH2Cl2. TPA
spectra are plotted at lex/2.
1 (a) A. Tsuda and A. Osuka, Adv. Mater., 2002, 14, 75–79; (b) T. Ikda,
N. Aratani and A. Osuka, Chem.–Asian J., 2009, 4, 1248–1256.
2 (a) A. Tsuda and A. Osuka, Science, 2001, 293, 79–82; (b) D. Kim
and A. Osuka, Acc. Chem. Res., 2004, 37, 735–745.
3 C. Jiao, L. Zhu and J. Wu, Chem.–Eur. J., 2011, 17, 6610–6614.
4 (a) H. S. Gill, M. Harmjanz, J. Santamarıa, I. Finger and
´
oxidation by conversion of a CQC bond into a single bond,
leading to a less contorted conformation.5f
M. J. Scott, Angew. Chem., Int. Ed., 2004, 43, 485–490;
(b) O. Yamane, K. Sugiura, H. Miyasaka, K. Nakamura,
T. Fujimoto, K. Nakamura, T. Kaneda, Y. Sakata and
M. Yamashita, Chem. Lett., 2004, 40–41; (c) K. Kurotobi,
K. S. Kim, S. B. Noh, D. Kim and A. Osuka, Angew. Chem.,
Int. Ed., 2006, 45, 3944–3947; (d) M. Tanaka, S. Hayashi, S. Eu,
T. Umeyama, Y. Matano and H. Imahori, Chem. Commun., 2007,
2069–2071; (e) S. Tokuji, Y. Takahashi, H. Shinmori,
H. Shinokubo and A. Osuka, Chem. Commun., 2009, 1028–1030;
(f) N. K. S. Davis, A. L. Thompson and H. L. Anderson, Org.
Lett., 2010, 12, 2124–2127; (g) V. V. Diev, K. Hanson,
J. D. Zimmerman, S. R. Forrest and M. E. Thompson, Angew.
Chem., Int. Ed., 2010, 49, 5523–5526; (h) C. Jiao, K.-W. Huang,
Z. Guan, Q.-H. Xu and J. Wu, Org. Lett., 2010, 12, 4046–4049;
(i) C. Jiao, K.-W. Huang, C. Chi and J. Wu, J. Org. Chem., 2011,
76, 661–664; (j) N. K. S. Davis, A. L. Thompson and
H. L. Anderson, J. Am. Chem. Soc., 2011, 133, 30–31.
Femtosecond transient absorption (TA) measurements were then
carried out to explore the excited-state photophysical properties of 1
and 2 in DCM. The TA spectrum of 1 exhibits a ground-state
bleach (GSB) signal around 630 nm as well as an excited-state
absorption (ESA) band at 450–600 nm (Fig. S4 in ESIz).
Compound 2 exhibits two distinct GSB signals at around
530 and 650–750 nm, and an ESA band at 450–520 nm
(Fig. S5 in ESIz). The singlet excited-state lifetimes of 1 and
2 were estimated to be around 11.4 and 11.7 ps, respectively.
These fast singlet excited-state recovery processes are observed
in most Ni-porphyrins.
Third order non-linear optical (NLO) response of these quinoidal
porphyrins is also of interest. Currently, most NLO studies on
porphyrin-based materials are focused on the ethynyl-linked and
aromatics-fused porphyrins,1b,12 but little work was conducted for
the quinoidal porphyrins. TPA measurements were conducted for 1
and 2 by using a wavelength-scanning open aperture Z-scan
method in the wavelength range from 1200 to 1600 nm where
one-photon absorption contribution in negligible. Compound 1
showed the largest TPA cross section s(2) value of 450 GM at
1200 nm, while compound 2 exhibited a maximum s(2) value of
510 GM at 1200 nm in the measurement range (Fig. 4 and Fig. S6
in ESIz). The slightly higher s(2) value for 2 compared to 1 at
the same wavelength can be explained by the more extended
p-conjugation. Compared with the simple aromatic porphyrin
monomer which usually showed a small TPA cross section
(o100 GM),1b the quinoidal porphyrins 1 and 2 exhibited
enhanced NLO response which must be related to their quinoidal
electronic structure. However, the s(2) values are smaller than
those of most ethynyl-linked and aromatics-fused porphyrins,
and a better understanding of this difference is needed in future
work by designing different quinoidal porphyrins.
5 (a) T. G. Traylor, K. B. Nolan and R. Hildreth, J. Am. Chem. Soc.,
1983, 105, 6149–6151; (b) A. J. Golder, L. R. Milgrom,
K. B. Nolan and D. C. Povey, J. Chem. Soc., Chem. Commun.,
1989, 1751–1753; (c) N. Y. Nelson, R. G. Khoury, D. J. Nurco and
K. M. Smith, Chem. Commun., 1998, 1687–1688; (d) I. M. Blake,
H. L. Anderson, D. Beljonne, J.-L. Bredas and W. Clegg, J. Am.
´
Chem. Soc., 1998, 120, 10764–10765; (e) I. M. Blake, L. H. Rees,
T. D. W. Claridge and H. L. Anderson, Angew. Chem., Int. Ed.,
2000, 39, 1818–1821; (f) I. M. Blake, A. Krivokapic, M. Katterle and
H. L. Anderson, Chem. Commun., 2002, 1662–1663; (g) M. Kamo,
A. Tsuda, Y. Nakamura, N. Aratani, K. Furukawa, T. Kato and
A. Osuka, Org. Lett., 2003, 5, 2079–2082; (h) M. J. Smith, W. Clegg,
K. A. Nguyen, J. E. Rogers, R. Pachter, P. A. Fleitzc and
H. L. Anderson, Chem. Commun., 2005, 2433–2435.
6 D. Lahaye, K. Muthukumaran, C.-H. Hung, D. Gryko,
I. Batinic-Haberle and
´
J. S. Rebouc¸
as, I. Spasojevic
´
,
J. S. Lindsey, Bioorg. Med. Chem., 2007, 15, 7066–7086.
7 E. J. Corey and P. L. Fuchs, Tetrahedron Lett., 1972, 3769–3772.
8 W. K. Chow, C. M. So, C. P. Lau and F. Y. Kwong, Chem.–Eur.
J., 2011, 17, 6913–6917.
9 J. Wu, W. Pisula and K. Mullen, Chem. Rev., 2007, 107, 718–747.
¨
10 L. Zhai, S. Ruchi, H. W. Shriya and R. Rathore, J. Org. Chem.,
2010, 75, 4748–4760.
11 X. Zhang, X. Jiang, K. Zhang, L. Mao, J. Luo, C. Chi, H. S. O.
Chan and J. Wu, J. Org. Chem., 2010, 75, 8069–8077.
12 M. Pawlicki, H. A. Collins, R. G. Denning and H. L. Anderson,
Angew. Chem., Int. Ed., 2009, 48, 3244–3266.
In summary, two 4-tert-butylphenyl-substituted and fused
quinoidal porphyrins 1 and 2 were prepared for the first time.
c
7686 Chem. Commun., 2012, 48, 7684–7686
This journal is The Royal Society of Chemistry 2012