Organic Letters
Letter
5 in 87% yield. Moreover, 2a was also used in the preparation
of highly functionalized pyrazolone 6 in 68% yield (Scheme 5).
Pedro P. de Castro − Department of Chemistry, Federal
University of Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil
́
Helio F. Dos Santos − Department of Chemistry, Federal
University of Juiz de Fora, 36036-900 Juiz de Fora, MG,
Scheme 5. Reactions Employing 2a as a Building Block
Complete contact information is available at:
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful for generous financial support from CAPES
(Finance Code 001), CNPq (310514/2018-5), FAPEMIG,
FAPESP (Grants 2018/00106-7 and 2013/07276-1), and
́
Rede Mineira de Quimica. Furthermore, we are grateful to Dr.
Angelina de Almeida (Instituto Federal de Sergipe) and Dr.
Arthur Carpanez (Universidade Federal de Juiz de Fora) for all
of their help in the early studies.
In summary, a photochemical flow hydrotrifluoromethyla-
tion methodology for unsaturated β-keto esters is described
herein. To the best of our knowledge, this constitutes the first
photoflow protocol with an EDA approach to CF3 radical
conjugate additions into these dicarbonyl derivatives. The
method does not require the use of any metal-based catalyst
and proceeds through an EDA approach. Furthermore, under
the optimized reaction conditions, a substrate scope of 14
derivatives was described in up to 86% yield. Control reactions
and DFT calculations were performed and suggested a
mechanism involving EDA formation followed by conjugate
addition of trifluoromethyl radical and a proton transfer step. A
scale-up to 1 mmol could be accomplished, leading to product
2a in 68% yield. Finally, product 2a could be successfully
employed in the synthesis of two trifluoromethyl-substituted
heterocycles that may serve as valuable bioactive molecules,
opening up further synthetic transformations for these
dicarbonyl trifluoro derivatives.
REFERENCES
■
(1) (a) Choi, J.; Fu, G. C. Science 2017, 356, No. eaaf7230. (b) Lu,
X.; Xiao, B.; Zhang, Z.; Gong, T.; Su, W.; Yi, J.; Fu, Y.; Liu, L. Nat.
Commun. 2016, 7, 11129.
(2) (a) Goldberg, F. W.; Kettle, J. G.; Kogej, T.; Perry, M. W. D.;
Tomkinson, N. P. Drug Discovery Today 2015, 20, 11. (b) Woerly, E.
M.; Roy, J.; Burke, M. D. Nat. Chem. 2014, 6, 484. (c) Blakemore, D.
C.; Castro, L.; Churcher, I.; Rees, D. C.; Thomas, A. W.; Wilson, D.
M.; Wood, A. Nat. Chem. 2018, 10, 383.
(3) (a) Dishington, A.; Feron, J. L.; Gill, K.; Graham, M. A.;
Hollingsworth, I.; Pink, J. H.; Roberts, A.; Simpson, I.; Tatton, M.
Org. Lett. 2014, 16, 6120. (b) Zhang, Y.; Benmohamed, R.; Huang,
H.; Chen, T.; Voisine, C.; Morimoto, R. I.; Kirsch, D. R.; Silverman,
R. B. J. Med. Chem. 2013, 56, 2665. (c) Ghosh, P. P.; Pal, G.; Paul, S.;
Das, A. R. Green Chem. 2012, 14, 2691. (d) Pasceri, R.; Bartrum, H.
E.; Hayes, C. J.; Moody, C. J. Chem. Commun. 2012, 48, 12077.
(e) Hu, X.; Chen, F.; Deng, Y.; Jiang, H.; Zeng, W. Org. Lett. 2018,
20, 6140. (f) White, A. R.; Kozlowski, R. A.; Tsai, S. C.; Vanderwal, C.
D. Angew. Chem., Int. Ed. 2017, 56, 10525. (g) He, C.; Guo, S.; Ke, J.;
Hao, J.; Xu, H.; Chen, H.; Lei, A. J. Am. Chem. Soc. 2012, 134, 5766.
(h) Lou, J.; Wang, Q.; Wu, K.; Wu, P.; Yu, Z. Org. Lett. 2017, 19,
3287. (i) Zhou, Y.; Zhu, F.; Liu, Z.; Zhou, X.; Hu, X. Org. Lett. 2016,
18, 2734. (j) Yang, J.; Mei, F.; Fu, S.; Gu, Y. Green Chem. 2018, 20,
1367. (k) Ma, J.; Zhong, L.; Peng, X.; Sun, R. Green Chem. 2016, 18,
1738. (l) De Castro, P. P.; Dos Santos, J. A.; De Siqueira, M. M.;
Batista, G. M. F.; Dos Santos, H. F.; Amarante, G. W. J. Org. Chem.
2019, 84, 12573.
ASSOCIATED CONTENT
* Supporting Information
■
sı
The Supporting Information is available free of charge at
Experimental procedures, pictures of the reactor setup,
copies of NMR spectra, computational data, and batch
reaction conditions optimization study (PDF)
(4) (a) Levitre, G.; Dagousset, G.; Anselmi, E.; Tuccio, B.; Magnier,
E.; Masson, G. Org. Lett. 2019, 21, 6005. (b) Chen, C.-T.; Chen, Y.-
P.; Tsai, B.-Y.; Liao, Y.-Y.; Su, Y.-C.; Chen, T.-C.; Lu, C.-H.; Fujii, R.;
Kawashima, K.; Mori, S. ACS Catal. 2020, 10, 3676. (c) Gelat, F.;
Patra, A.; Pannecoucke, X.; Biju, A. T.; Poisson, T.; Besset, T. Org.
Lett. 2018, 20, 3897.
AUTHOR INFORMATION
Corresponding Authors
■
Kleber T. de Oliveira − Department of Chemistry, Federal
University of Sao Carlos, 13565-905 Sao Carlos, SP, Brazil;
̃ ̃
(5) (a) Wu, X.; Chu, L.; Qing, F. L. Angew. Chem., Int. Ed. 2013, 52,
̈
2198. (b) Straathof, N. J. W.; Cramer, S. E.; Hessel, V.; Noel, T.
Angew. Chem., Int. Ed. 2016, 55, 15549.
Giovanni W. Amarante − Department of Chemistry, Federal
University of Juiz de Fora, 36036-900 Juiz de Fora, MG,
(6) (a) Jacquet, J.; Blanchard, S.; Derat, E.; Desage-El Murr, M.;
Fensterbank, L. Chem. Sci. 2016, 7, 2030. (b) Koike, T.; Akita, M. Acc.
Chem. Res. 2016, 49, 1937. (c) Beatty, J. W.; Douglas, J. J.; Miller, R.;
McAtee, R. C.; Cole, K. P.; Stephenson, C. R. J. Chem. 2016, 1, 456.
(d) Zhu, M.; Zhou, K.; Zhang, X.; You, S. L. Org. Lett. 2018, 20, 4379.
Green Sust. Chem. 2020, 25, 100351.
Authors
Gabriel M. F. Batista − Department of Chemistry, Federal
University of Juiz de Fora, 36036-900 Juiz de Fora, MG,
Brazil; Department of Chemistry, Federal University of Sao
Carlos, 13565-905 Sao Carlos, SP, Brazil
̃
(8) (a) Tu, H. Y.; Zhu, S.; Qing, F. L.; Chu, L. Chem. Commun.
2018, 54, 12710. (b) Lima, C. G. S.; Lima, T. d. M.; Duarte, M.;
̃
D
Org. Lett. XXXX, XXX, XXX−XXX