Synthesis and Olfactory Properties of New Macrocyclic Musks
COMMUNICATION
[6] Y. Zou, C. Ding, L. Zhou, Z. Li, Q. Wang, F. Schoenebeck, A.
[8] For reviews on the 2-oxonia-Cope rearrangement, see: a) L. E.
[9] For a general review on Prins-type macrocyclizations, see: E. A.
4679–4686; b) S. R. Crosby, J. R. Harding, C. D. King, G. D. Parker,
9939–9945; e) C. S. Barry, N. Bushby, J. R. Harding, R. A. Hughes,
13640–13648; g) P. O. Miranda, M. A. Ramꢅrez, V. S. Martꢅn, J. I.
resulting Z- and E-isomeric cyclopent-3-en-1-ols separated
by flash chromatography, and transformed into isomerically
pure formates (Z)-10d and (E)-10d that were then treated
separately with BF3·OEt2 in dichloroethane under exactly
the same conditions as in the cyclization reaction. After 24 h
of stirring, (Z)-10d partially isomerized to (E)-10d, whereas
(E)-10d did not isomerize to (Z)-10d. Thus, it is indeed
most likely that the (E)-10c–g isomers result from a subse-
quent isomerization reaction. The new macrocyclization 8!
(Z)-10 accordingly proceeds almost exclusively on an oxy-
oxonia-Cope path.
We have reported on a new efficient macrocyclization of
2-isopropenyl dialdehydes 8 to (3Z)-configured cycloalk-3-
en-1-yl formats (Z)-10 in the presence of Lewis acids. These
findings proved useful in the synthesis of several unsaturat-
ed and saturated macrocyclic ketones, including (ꢀ)-mus-
cone (1), and allowed additional insight into the structure–
odor correlation of musks, resulting in an olfactophore
model, which makes it likely that macrocyclic and linear ali-
cyclic musks address the same set of olfactory receptors.
[11] Selected more recent syntheses of (ꢀ)-muscone (1): a) K. H.
Misaki, T. Itoh, M. Yamamoto, K. Mitarai, Y. Nishii, Tetrahedron
g) H. Tsuji, K. Yamagata, Y. Itoh, K. Endo, M. Nakamura, E. Naka-
Experimental Section
General procedure: Cyclization of 2-(prop-1-en-2-yl)heptadecanedial (8g)
to (3Z)-3-methylcyclooctadec-3-enyl formate (10g): At room temperature,
under N2 atmosphere, and with the aid of a syringe pump, a solution of
dialdehyde 8g (308 mg, 1.00 mmol) in 1,2-dichloroethane (200 mL) was
added at a rate of 2 mLhꢁ1 to a vigorously stirred solution of BF3·OEt2
(710 mg, 5.0 mmol) in 1,2-dichloroethane (800 mL). After 100 h, the addi-
tion was complete, and the reaction mixture was stirred at room tempera-
ture for another 1 h, prior to quenching by addition of saturated aq.
NaHCO3 (10 mL). The organic layer was separated and dried with
MgSO4, the solvent evaporated under reduced pressure, and the crude
product purified by flash chromatography (hexane/MTBE, 25:1, Rf =
0.30) to furnish 10g (277 mg, 90%).
[13] For examples of deconjugated a-alkylation of amides, see: a) G. E.
[14] For examples of a-alkylation of Weinreb amides, see: a) A. N. Cher-
nega, S. G. Davies, C. J. Goodwin, D. Hepworth, W. Kurosawa, P. M.
[16] Discovery Studio 3.0–advanced software package for life science re-
searchers, Accelrys, Inc., San Diego, CA 92121, 2010. For more in-
formation, see http://accelrys.com/.
Acknowledgements
We thank Dr. G. Brunner for NMR experiments, Dr. F. Kuhn and Dr. J.
Schmid for MS data, K. Grman for odor-threshold determinations, and
A. E. Alchenberger as well as D. Lelievre for olfactory evaluations. The
Center for Computing and Communication at the RWTH Aachen Uni-
versity is acknowledged for free computational time, and the state of
North Rhine-Westphalia for additional funding.
[17] Gaussian 03, Revision E. 01, M. J. Frisch, G. W. Trucks, H. B. Schle-
gel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgom-
ery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S.
Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani,
N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian,
J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.
Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J.
Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C.
Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari,
J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cio-
slowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaro-
mi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng,
Keywords: fragrances
reaction · rearrangement · structure–odor relationship
· ketones · macrocycles · Prins
[1] a) G. Ohloff, W. Pickenhagen, P. Kraft, Scent and Chemistry–The
Molecular World of Odors, Verlag Helvectica Chimica Acta, Zurich,
2011, p. 339–364; b) P. Kraft in Chemistry and Technology of Fla-
vors and Fragrances (Ed: D. J. Rowe), Blackwell, Oxford, 2005,
pp. 143–168; c) P. Kraft in, Perspectives in Flavor and Fragrance Re-
search (Eds.: P. Kraft, K. A. D. Swift), Verlag Helvectica Chimica
Acta, Zurich, 2005, pp. 127–144; d) G. Frꢄter, J. Bajgrowicz, P.
Kraft, Tetrahedron 1998, 54, 7633–7703; e) P. Kraft, C. Denis, J. Baj-
Chem. Int. Ed. 2000, 39, 2980–3010.
Chem. Eur. J. 2012, 00, 0 – 0
ꢂ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
&
5
&
ÞÞ
These are not the final page numbers!