M. Rodríguez et al. / Polyhedron 43 (2012) 194–200
199
as is shown in Fig. 1 and data in Table 2 (torsion angles). In the case
of compounds 1b and 2b, even when the X-ray data indicate that
the planarity is preserved after boron complexation and that the
UV spectra show a red shift, not any considerable change is ob-
served for v(3) values. The key to explain this observation could
thank M. Olmos, M.A Leyva and Dr. R. Espinosa-Luna for their tech-
nical assistance.
Appendix A. Supplementary data
be associated with the deformation of the electronic
from ligand to boron complex, ligands have a D– –C@N–
arrangement (effective D– –A push–pull architecture) but the for-
mation of the N ? B bond produces a D– –A system,
–C@N+–
which it also might be viewed as a D– –A– –A structure. In this
p
-system
CCDC 865882, 865883, 865884, 865885 and 865881 contains
the supplementary crystallographic data for 1b, 1c, 2a, 2b and
2c. These data can be obtained free of charge via http://
Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ,
UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.
p
p
–A
p
p
p
p
p
way, the D–A combination presented in compounds 2a–2c could
be less efficient for third-harmonic generation than those for the
ligands 1a–1c.
Note that in the calculation of v(3) it is important to consider
the absorption of the films according to the formalism of the
Maker-Fringes technique (see Eq. (1)). The absorption coefficients
References
[1] N. Fujita, S. Shinkai, T.D. James, Chem. Asian J. 3 (2008) 1076.
[2] K. Gießler, H. Griesser, D. Göhringer, T. Sabirov, C. Richert, Eur. J. Org. Chem.
2010 (2010) 3611.
[3] A.E. Hargrove, R.N. Reyes, I. Riddington, E.V. Anslyn, J.L. Sessler, Org. Lett. 12
(2010) 4804.
(a) at 400 nm for 1a, 1b, 2a and 2b are 6.2, 2.5, 2.9 and
1.5 ꢀ 104 cmꢁ1, respectively, so there is not a significant difference
between them in the v(3) values through three-photon resonance
(about a factor of less than 1.5 times for the largest difference on
the cubic susceptibility values) when using the wavelength of
1200 nm (see Eq. (1)).
[4] Y.L. Rao, S. Wang, Inorg. Chem. 50 (2011) 12263.
[5] J.L. Maldonado, G. Ramos-Ortíz, O. Barbosa-García, M.A. Meneses-Nava, L.
Márquez, M. Olmos-López, H. Reyes, B. Muñoz, N. Farfán, Int. J. Mod. Phys. B 21
(2007) 2625.
[6] S. Schlecht, W. Frank, M. Braund, Eur. J. Org. Chem. 2010 (2010) 3721.
[7] H. Höpfl, J. Organomet. Chem. 581 (1999) 129.
[8] Y. Qin, I. Kiburu, S. Shah, F. Jäkle, Org. Lett. 8 (2006) 5227.
[9] D. Frath, S. Azizi, G. Uldrich, P. Retailleau, R. Ziessel, Org. Lett. 13 (2011) 3414.
[10] S.P. Forrest, M.K. Thompson, Chem. Rev. 107 (2007) 923.
[11] S.R. Marder, J. Mater. Chem. 19 (2009) 7392.
[12] C. Fuentes-Hernández, G. Ramos-Ortíz, S.Y. Tseng, M.P. Gaj, B. Kippelen, J.
Mater. Chem. 19 (2009) 7394.
[13] G. Ramos-Ortíz, J.L. Maldonado, M.C.G. Hernández, M.G. Zolotukhin, S. Fomine,
N. Fröhlich, U. Scherf, F. Galbrech, E. Preis, M. Salmon, J. Cárdenas, M.I. Chávez,
Polymer 51 (2010) 2351.
[14] J.P. Morrall, G.T. Dalton, M.G. Humphrey, M. Samoc, Adv. Organomet. Chem. 51
(2008) 61.
[15] B.J. Coe, J.A. Harris, J.J. Hall, B.S. Brunschwing, S.T. Hung, W. Libaers, K. Clays,
S.J. Coles, P.N. Horton, M.E. Light, M.B. Hursthouse, J. Garín, J. Orduna, Chem.
Mater. 18 (2006) 5907.
[16] H.S. Nalwa, S. Miyata (Eds.), Nonlinear Optics of Organic Molecules and
Polymers, CRC Pres, Boca Raton FL, 1997.
The wavelength dependence of the third-order nonlinear sus-
ceptibility for compounds 1a and 2a was also determined (see
Fig. 4). To clarify this multi-photon resonance, Fig. 4 includes the
linear absorption spectrum of the film (bottom and left axes). Note
that the wavelength scales are arranged in such a way that the top
scale is 3 times the bottom one. Thus, according to the absorption
peaks located at 428 and 445 nm for 1a and 2a, respectively, there
is a slight enhancement of the cubic nonlinearities through three-
photon resonances, which is more notorious for 1a compound than
for 2a.
4. Conclusions
[17] E.E. Moore, D. Yaron, J. Phys. Chem. A 106 (2002) 5339.
[18] S.R. Marder, J.W. Perry, G. Bourhill, C.B. Gorman, B.G. Tiemann, K. Mansour,
Science 261 (1993) 186.
[19] B.M. Muñoz, R. Santillan, M. Rodríguez, J.M. Méndez, M. Romero, N. Farfán, P.G.
Lacroix, K. Nakatani, G. Ramos-Ortíz, J.L. Maldonado, J. Organomet. Chem. 693
(2008) 1321.
[20] M. Rodríguez, R. Castro-Beltrán, G. Ramos-Ortíz, J.L. Maldonado, N. Farfán, O.
Domínguez, J. Rodríguez, R. Santillan, M.A. Meneses-Nava, O. Barbosa-García, J.
Peón, Synth. Met. 159 (2009) 1281.
[21] M. Rodríguez, J.L. Maldonado, G. Ramos-Ortíz, J.F. Lamère, P. Lacroix, N. Farfán,
M.E. Ochoa, R. Santillan, M.A. Meneses-Nava, O. Barbosa-García, K. Nakatani,
New J. Chem. 33 (2009) 1693.
[22] J.F. Lamère, P.G. Lacroix, N. Farfán, J.M. Rivera, R. Santillan, K. Nakatani, J.
Mater. Chem. 16 (2006) 2913.
[23] J.L. Maldonado, Y. Ponce-de-León, G. Ramos-Ortíz, M. Rodríguez, M.A.
Meneses-Nava, O. Barbosa-García, R. Santillan, N. Farfán, J. Phys. D 42 (2009)
075102.
[24] V.M. Herrera-Ambriz, J.L. Maldonado, M. Rodríguez, R. Castro-Beltrán, G.
Ramos-Ortíz, N.E. Magaña-Vergara, M.A. Meneses-Nava, O. Barbosa-García, R.
Santillan, N. Farfán, F.X. Dang, P.G. Lacroix, I. Ledeoux-Rak, J. Phys. Chem. C 115
(2011) 23955.
[25] F. Qiao, A. Liu, Y. Zhou, Y. Xiao, P.O. Yang, J. Mater. Sci. 44 (2009) 1283.
[26] J.F. Salinas, J.L. Maldonado, G. Ramos-Ortíz, M. Rodríguez, M.A. Meneses-Nava,
O. Barbosa-García, R. Santillan, N. Farfán, Sol. Energy Mater. Sol. Cells 95 (2011)
595.
We have synthesized three borinates 2a–2c and their chemical
structures were established by NMR data; information of com-
pound 2a was compared with data lately reported. Third-order
nonlinear susceptibilities were measured at IR wavelengths for
compounds 1a–1b and 2a–2b. Reduction on the cubic susceptibil-
ity from 1a–1b to 2a–2b (for family c was not possible to measure
v(3) because of the poor THG response) was related to structural
features. Structurally, compound 2a showed a larger twisted con-
formation with respect to its ligand 1a, which was estimated by
computed calculations using the density functional theory (DFT)
at the B3PW91/6-31G⁄ level and confirmed by X-ray diffraction
analysis. In the case of compound 2b, a smaller reduction of v(3)
with respect to that one for 2a, was estimated when going from li-
gands 1b (reduction of 1.3) and 1a (reduction of 2.6), respectively;
it might be just to the deformation of the electronic
D– –A to D– –A– –A after boron complexation in 2b) because the
X-ray data indicate that its planarity is preserved. In the
wavelength dependence of
(3), a slight enhancement through
three-photon resonances was also observed. These -backbones
p system (from
p
p
p
v
p
[27] J.W. Ledbetter, J. Phys. Chem. 72 (1968) 4111.
like systems, as interesting dyes with structural and electronic
features that affect their NLO properties, could have different inter-
esting optical properties, such as Two Photon Absorption (TPA),
particularly, through their re-design with appropriate combination
of the electronic groups.
[28] G. Chremos, H. Weidmann, H. Zimmerman, J. Org. Chem. 26 (1961) 1683.
[29] M.C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G.L. Cascarano, L. De Caro, C.
Giacovazzo, G. Polidori, R. Spagna, J. Appl. Crystallogr. 38 (2005) 381.
[30] G.M. Sheldrick, SHELXS-86 – Program for Crystal Structure Solution, University
of Göttingen, Germany, 1986.
[31] G.M. Sheldrick, SHELXL-97 – Program for the Refinement of Crystal Structure,
University of Göttingen, Germany, 1997.
[32] G. Ramos-Ortíz, J.L. Maldonado, M.A. Meneses-Nava, O. Barbosa-García, M.
Olmos-López, M. Cha, Opt. Mater. 29 (2007) 636.
Acknowledgements
[33] E. Klimova, T. Klimova, J.M. Martínez-Mendoza, L. Ortíz-Frade, J.L. Maldonado,
G. Ramos-Ortíz, M. Flores-Alamo, M. Martínez-García, Inorg. Chim. Acta 362
(2009) 2820.
[34] X.H. Wang, D.P. West, N.B. McKeown, T.A. King, J. Opt. Soc. Am. B 15 (1998)
1895.
M. Rodríguez thanks Postdoctoral CONACyT Grant. This work
was supported by CONACyT projects 55250, 49512, 58783,
83519; CONACyT-SENER 153094 and PAPIIT IN-214010. Authors