ultimately contribute to establish the molecular foundation
for the functions and applications of aggregates (e.g. nano-
fibers) of small molecules in the cellular environment.
This work was partially supported by NIH (R01CA142746)
and HFSP (RGP0056/2008). We thank EM facilities of Bran-
deis University for TEM. M. J. C. L. acknowledges the HHMI
predoctoral fellowship.
Notes and references
1 G. M. Whitesides and B. Grzybowski, Science, 2002, 295, 2418–2421.
2 H. Lodish, A. Berk, C. A. Kaiser, M. Krieger, M. P. Scott,
A. Bretscher, H. Ploegh and P. Matsudaira, Molecular Cell Biology,
W. H. Freeman, New York, 6th edn, 2007.
3 H. W. Querfurth and F. M. LaFerla, N. Engl. J. Med., 2010, 362,
329–344.
4 P. Caron, A. Beckers, D. R. Cullen, M. I. Goth, B. Gutt,
P. Laurberg, A. M. Pico, M. Valimaki and W. Zgliczynski,
J. Clin. Endocrinol. Metab., 2002, 87, 99–104.
5 J. R. Glover and S. Lindquist, Cell (Cambridge, Mass.), 1998, 94,
73–82.
6 J. W. Szostak, Philos. Trans. R. Soc. London, Ser. B, 2011, 366,
2894–2901; S. Koga, D. S. Williams, A. W. Perriman and S. Mann,
Nat. Chem., 2011, 3, 720–724.
7 L. Schmidt-Mende, A. Fechtenkotter, K. Mullen, E. Moons,
R. H. Friend and J. D. MacKenzie, Science, 2001, 293, 1119.
8 G. M. Whitesides, J. P. Mathias and C. T. Seto, Science, 1991, 254,
1312–1319.
9 J. M. Lehn, Angew. Chem., Int. Ed., 1988, 27, 89–112.
10 Z. H. Wang, H. M. Wang, W. T. Zheng, J. Zhang, Q. Zhao,
S. F. Wang, Z. M. Yang and D. L. Kong, Chem. Commun., 2011,
47, 8901–8903; H. Kobayashi, A. Friggeri, K. Koumoto, M. Amaike,
S. Shinkai and D. N. Reinhoudt, Org. Lett., 2002, 4, 1423–1426;
L. A. Estroff, L. Addadi, S. Weiner and A. D. Hamilton, Org.
Biomol. Chem., 2004, 2, 137–141; L. A. Estroff and A. D. Hamilton,
Chem. Rev., 2004, 104, 1201–1217; S. Ray, A. K. Das and
A. Banerjee, Chem. Commun., 2006, 2816–2818; S. Matsumoto,
S. Yamaguchi, A. Wada, T. Matsui, M. Ikeda and I. Hamachi,
Chem. Commun., 2008, 1545–1547; L. X. Xiao, C. Liu, J. H. Zhu,
D. J. Pochan and X. Q. Jia, Soft Matter, 2010, 6, 5293–5297; H. Cui,
T. K. Hodgdon, E. W. Kaler, L. Abezgauz, D. Danino,
M. Lubovsky, Y. Talmon and D. J. Pochan, Soft Matter, 2007, 3,
945–955; J. W. Sadownik and R. V. Ulijn, Chem. Commun., 2010, 46,
3481–3483; R. J. Williams, A. M. Smith, R. Collins, N. Hodson,
A. K. Das and R. V. Ulijn, Nat. Nanotechnol., 2009, 4, 19–24;
Y. J. Wang, B. Desbat, S. Manet, C. Aime, T. Labrot and R. Oda,
J. Colloid Interface Sci., 2005, 283, 555–564; N. M. Sangeetha and
U. Maitra, Chem. Soc. Rev., 2005, 34, 821–836.
11 Z. Yang, G. Liang and B. Xu, Acc. Chem. Res., 2008, 41, 315–326.
12 A. M. Kloxin, A. M. Kasko, C. N. Salinas and K. S. Anseth,
Science, 2009, 324, 59–63.
13 J. B. Matson and S. I. Stupp, Chem. Commun., 2012, 48, 26–33.
14 S. Kiyonaka, K. Sada, I. Yoshimura, S. Shinkai, N. Kato and
I. Hamachi, Nat. Mater., 2004, 3, 58–64.
15 M. Suchanek, A. Radzikowska and C. Thiele, Nat. Methods, 2005,
2, 261–267.
16 Y. Zhang, Y. Kuang, Y. A. Gao and B. Xu, Langmuir, 2011, 27,
529–537.
Fig. 3 (A) Tandem MS analysis indicates the most abundant hydrogel-
bound cytosolic proteins by sequence coverage. Black: proven binding
partners; grey partners that bind to cytoskeleton protein/fibers; white
proteins that were identified with no known association with the verified
proteins. Validation of protein–nanofibers interactions: (B) cell lysate was
incubated with the hydrogel and thoroughly washed under the conditions
shown on the top and subjected to Western blotting with antibody to actin;
(C) cell lysate was incubated with the hydrogel and thoroughly washed
under the conditions of 250 mM of NaCl, 0.6% triton, w/o colchicine, and
subjected to Western blotting with antibodies to tubulin and GAPDH
(another abundant protein expressed inside mammalian cells).
digestion18 and tandem MS analysis.19 Fig. 3A shows the proteins
that have the sequence coverage higher than 20% from the tandem
MS analysis. The sequence coverage of the proteins suggests that
the molecular nanofibers interact with tubulins, actins, and several
other proteins, which agrees well with the molecular weights of the
proteins in the bands of 55 kDa and 42 kDa.2
Based on the proteomic analysis (Fig. 3A), we use Western
blot20 to confirm some of the protein hits. As shown in Fig. 3B,
the protein bands at 42 kDa clearly contain actins. This result
also explains the observation of SEP-T7 in the MS spectra
because SEP-T7 can co-precipitate with actins.21 As a frequently
used control in protein analysis, Western blot of GAPDH
protein22 in Fig. 3C validates that the washing step successfully
removes nonspecific bound proteins from the hydrogel of 1. As
shown in Fig. 3C, Western blot proves the existence of tubulins
in the band of 55 kDa. The addition of 6 mM of colchicine (which
depolymerizes microtubules) hardly changes the binding results,
suggesting that the nanofibers bind both tubulins and micro-
tubules. This result also agrees with the high sequence coverage
of SEP-T2 because SEP-T2 can co-localize with microtubules.23
While the nature of the interactions between the nanofibers and
the other hits in Fig. 3A remains to be elucidated, we speculate
that a chaperonin (CCT-2) may interact with the peptidic
nanofibers of 1 because it binds to damaged or unfolded proteins.
In summary, this work indicates that the aggregates of small
molecules can selectively interact with certain protein targets.
Although the increase in the binding specificity of the nanofibers
toward a particular protein target relies on the molecular structure
of the small molecules, the negative result of anti-GAPDH blot in
Fig. 3C indicates that the interaction between tubulins and the
nanofibers of 1 is unlikely nonspecific. Because it is easy to
incorporate other bioactive molecules (e.g. taxol) into hydro-
gelators via the C-terminal16 or the e-amino group of lysine
residue24 of molecules like 1, this approach also allows the
study of self-assembled small molecule–protein interaction.
Thus, this supramolecular hydrogel pull-down assay offers a
facile way for elucidating the correlations between the protein
targets and the aggregates of the small molecules, which
17 Cold Spring Harb. Protoc., 2006, DOI: 10.1101/pdb.rec10424.
18 J. Rosenfeld, J. Capdevielle, J. C. Guillemot and P. Ferrara, Anal.
Biochem., 1992, 203, 173–179.
19 R. Aebersold and D. R. Goodlett, Chem. Rev., 2001, 101, 269–295.
20 J. Renart, J. Reiser and G. R. Stark, Proc. Natl. Acad. Sci. U. S. A.,
1979, 76, 3116–3120.
21 M. Kinoshita, S. Kumar, A. Mizoguchi, C. Ide, A. Kinoshita, T.
Haraguchi, Y. Hiraoka and M. Noda, Genes Dev., 1997, 11, 1535–1547.
22 R. D. Barber, D. W. Harmer, R. A. Coleman and B. J. Clark,
Physiol. Genomics, 2005, 21, 389–395.
23 E. T. Spiliotis, M. Kinoshita and W. J. Nelson, Science, 2005, 307,
1781–1785.
24 Y. Gao, Y. Kuang, Z. F. Guo, Z. H. Guo, I. J. Krauss and B. Xu,
J. Am. Chem. Soc., 2009, 131, 13576–13577.
c
8406 Chem. Commun., 2012, 48, 8404–8406
This journal is The Royal Society of Chemistry 2012