5182
S. J. Heffernan, D. R. Carbery / Tetrahedron Letters 53 (2012) 5180–5182
Goundry, W. R. F.; Lam, H. W. J. Chem. Soc., Chem. Commun. 2012, 48, 1505; (f)
O
Et
Dateer, R. B.; Shaibu, B. S.; Liu, R.-S. Angew. Chem., Int. Ed. 2012, 51, 113; (g)
Davies, P. W.; Cremonesi, A.; Dumitrescu, L. Angew. Chem., Int. Ed. 2011, 50,
8931; (h) Kramer, S.; Odabachian, Y.; Overgaard, J.; Rottlaender, M.; Gagosz, F.;
Skrydstrup, T. Angew. Chem., Int. Ed. 2011, 50, 5090.
LiHMDS (1.8 equiv)
TMSCl (1.8 equiv)
Et
O
O
N
O
O
THF, -95 °C to rt, 24 h
Me
7k, 38%, >95:5 Z/E
N
3. For recent reviews concerning the Ireland–Claisen rearrangement, see: (a)
Castro, A. M. Chem. Rev. 2004, 104, 2939; (b) Chai, Y. H.; Hong, S. P.; Lindsay, H.
A.; McFarland, C.; McIntosh, M. C. Tetrahedron 2002, 58, 2905; (c) McFarland, C.
M.; McIntosh, M. C. The Claisen Rearrangement In Hiersemann, M. N.,
O
6k
Nubbemeyer, U., Eds.; Wiley-VCH Verlag GmbH
& Co. KGaA: Weinheim:
Scheme 3. Incorporation of alkyl functionality.
Germany, 2007; p 117; (d) Wipf, P. Claisen Rearrangements, Comprehensive
Organic Synthesis. In Vol 5; Trost, B. M., Fleming, I., Paquette, L. A., Eds.;
Pergamon: Oxford, 1991; p 827; (e) Ilardi, E. A.; Stivala, C. E.; Zakarian, A. Chem.
Soc. Rev. 2009, 38, 3133.
O
O
O
4. (a) Harker, W. R. R.; Carswell, E. L.; Carbery, D. R. Org. Biomol. Chem. 2012, 1406;
(b) Ylioja, P. M.; Mosley, A. D.; Charlot, C. E.; Carbery, D. R. Tetrahedron Lett.
2008, 49, 1111.
5. (a) Fairhurst, N. W. G.; Mahon, M. F.; Munday, R. H.; Carbery, D. R. Org. Lett.
2012, 14, 756; (b) Tellam, J. P.; Carbery, D. R. Tetrahedron Lett. 2011, 52, 6027;
(c) Tellam, J. P.; Kociok-Köhn, G.; Carbery, D. R. Org. Lett. 2008, 10, 5199; (d)
Tellam, J. P.; Carbery, D. R. J. Org. Chem. 2010, 75, 7809.
6. For examples of Ireland–Claisen and related ester enolate rearrangements of
propargyl systems, see: (a) Rogakos, V.; Georgiadis, D.; Dive, V.; Yiotakis, A. Org.
Lett. 2009, 11, 4696; (b) Baldwin, J. E.; Bennett, P. A. R.; Forrest, A. K. J. Chem.
Soc., Chem. Commun. 1987, 250; (c) Takai, K.; Ueda, T.; Kaihara, H.; Sunami, Y.;
Moriwake, T. J. Org. Chem. 1996, 61, 8728; (d) Ishihara, J.; Koyama, N.; Nishino,
Y.; Takahashi, K.; Hatakeyama, S. Synlett 2009, 2351.
Ph
H
O
Ph
O
PhMe, 110 °C
O
H
N
O
24 h
N
Me
O
O
7a
8
O
9
Not Observed
,
Ph
Ph
O
Me
O
N
N
O
7. For the synthesis of
a-allenyl-a-amino acids through the ester enolate Claisen
O
rearrangement of -amino propargyl esters, see: (a) Casara, P.; Jund, K.; Bey, P.
a
Me
s-trans-7a
Tetrahedron Lett. 1891, 1984, 25; (b) Castelhano, A. L.; Horne, S.; Taylor, G. J.;
Billedeau, R.; Krantz, A. Tetrahedron 1988, 44, 5451; (c) Kazmaier, U.; Goerbitz,
C. H. Synthesis 1996, 1489.
s-cis-7a
8. For a recent review of allenamide chemistry, see: Hsung, R. P.; Wei, L.-L.; Xiong,
H. Acc. Chem. Res. 2003, 36, 773.
Scheme 4. Attempted Diels–Alder reaction and diene conformation.
9. For recent syntheses of allenamides, see: (a) Armstrong, A.; Emmerson, D. P. G.
Org. Lett. 2009, 11, 1547; (b) Hyland, C. J. T.; Hegedus, L. S. J. Org. Chem. 2005, 70,
8628; (c) Shen, L.; Hsung, R. P.; Zhang, Y.; Antoline, J. E.; Zhang, X. Org. Lett.
2005, 7, 3081; (d) Trost, B. M.; Stiles, D. T. Org. Lett. 2005, 7, 2117.
10. For recent synthetic usage, see: (a) Hayashi, R.; Hsung, R. P.; Feltenberger, J. B.;
Lohse, A. G. Org. Lett. 2009, 11, 2125; (b) Lu, T.; Hayashi, R.; Hsung, R. P.;
DeKorver, K. A.; Lohse, A. G.; Song, Z.; Tang, Y. Org. Biomol. Chem. 2009, 7, 3331;
(c) Lohse, A. G.; Hsung, R. P. Org. Lett. 2009, 11, 3430; (d) Manzo, A. M.; Perboni,
A. D.; Broggini, G.; Rigamonti, M. Tetrahedron Lett. 2009, 50, 4696; (e) Chen, G.;
Fu, C.; Ma, S. Org. Lett. 2009, 11, 2900; (f) Brummond, K. M.; Yan, B. Synlett
2008, 2303; (g) Beccalli, E. M.; Broggini, G.; Clerici, F.; Galli, S.; Kammerer, C.;
Rigamonti, M.; Sottocornola, S. Org. Lett. 2009, 11, 1563; (h) Song, Z.; Hsung, R.
P.; Lu, T.; Lohse, A. G. J. Org. Chem. 2007, 72, 9722.
11. Barbazanges, M.; Meyer, C.; Cossy, J. Tetrahedron Lett. 2008, 49, 2902.
12. Zhang, Y.; Hsung, R. P.; Tracey, M. R.; Kurtz, K. C. M.; Vera, E. L. Org. Lett. 2004, 6,
1151.
13. Hayashi, R.; Hsung, R. P.; Feltenberger, J. B.; Lohse, A. G. Org. Lett. 2009, 11,
2125.
14. Harker, W. R. R.; Carswell, E. L.; Carbery, D. R. Org. Lett. 2010, 12, 3712.
15. Craig has studied extensively a decarboxylative Claisen rearrangement. For a
discussion and leading references, see: Camp, J. E.; Craig, D.; Funai, K.; White, A.
J. P. Org. Biomol. Chem. 2011, 9, 7904.
Finally, we briefly examined the feasibility of 7a acting as a
diene component in a Diels–Alder reaction (Scheme 4).17 To assess
this point, diene 7a was refluxed in toluene for 24 h with the reac-
tive dienophile, maleic anhydride (8). Surprisingly, even though an
electron-rich diene is present with an electron-deficient dieno-
phile, no reaction was observed, with 7a recovered with full mass
balance. To account for this interesting observation, we suggest
that the requisite s-cis conformation of 7a cannot be accessed, even
under forcing conditions, from s-trans-7a.
In conclusion, the first Ireland–Claisen [3,3]-sigmatropic rear-
rangement of an ynamido ester is reported. A range of trisubsti-
tuted amidodienes has been accessed in good to excellent levels
of E/Z selectivity and good yields. We are currently examining
the synthetic utility of these amidodiene products further and
investigating the observed E/Z stereoselectivity. Details will be re-
ported in due course.
16. Representative example; synthesis of 7b. To a flask was added LiHMDS (1 M in
THF, 0.57 mL, 0.57 mmol, 1.8 equiv) and Me3SiCl (73 lL, 0.57 mmol, 1.8 equiv).
The mixture was stirred at À95 °C for 0.25 h before the dropwise addition of 6b
(100 mg, 0.32 mmol, 1 equiv) in THF (2 mL). After 0.5 h at À95 °C, the reaction
mixture was allowed to warm to room temperature after which time it was
stirred for an additional 24 h. The reaction was then quenched with 1:1 1 M
HCl/brine solution (5 mL) and extracted with EtOAc (3 Â 10 mL), with the
combined organic extracts being dried over Na2SO4, filtered, and concentrated
in vacuo. Purification via flash chromatography, eluting with 2:1 petroleum
Acknowledgements
We acknowledge the support of the University of Bath and
EPSRC for studentship funding (S.J.H.).
ether/EtOAc, gave Z/E-7b (46 mg, 53%). FTIR (film/cm–1
) tmax: 2903, 2798,
References and notes
1741, 1604, 1519. 1H NMR (500 MHz, CDCl3) dH: 7.29 (2H, app. d, J = 8.5 Hz),
6.65 (2H, app. d, J = 8.5 Hz), 6.48 (1H, s), 6.17–6.08 (1H, m), 5.79 (1H, dqd,
J = 11.4, 7.2, 0.8 Hz), 4.39 (1H, d, J = 7.7 Hz), 4.36 (1H, d, J = 6.7 Hz), 3.80 (1H, d,
1. For reviews of ynamide synthetic chemistry, see: (a) De Korver, K. A.; Li, H.;
Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110,
5064; (b) Evano, G.; Coste, A.; Jouvin, K. Angew. Chem., Int. Ed. 2010, 49, 2840.
2. For recent synthetic usage of ynamides, see: (a) Saito, N.; Ichimaru, T.; Sato, Y.
Org. Lett. 1914, 2012, 14; (b) DeKorver, K. A.; Wang, X.-N.; Walton, M. C.; Hsung,
R. P. Org. Lett. 2012, 14, 1768; (c) Garcia, P.; Evanno, Y.; George, P.; Sevrin, M.;
Ricci, G.; Malacria, M.; Aubert, C.; Gandon, V. Chem. Eur. J. 2012, 18, 4337; (d)
Jouvin, K.; Heimburger, J.; Evano, G. Chem. Sci. 2012, 3, 756; (e) Smith, D. L.;
J = 6.7 Hz), 3.77 (1H, d, J = 7.7 Hz), 2.96 (6H, s), 1.66 (3H, dd, J = 7.2, 1.8 Hz); 13
C
NMR (75 MHz, CDCl3) dC: 156.1, 149.5, 146.8, 130.3, 130.2, 128.5, 125.2, 123.8,
111.9, 61.6, 46.2, 40.4, 14.7; MS (ESI:+ve) m/z: calcd for
C16H20N2O2Na:
295.1422, found: 295.1417, [M+Na]+.
17. For a recent example of an amidodiene Diels-Alder reaction, see: Hayashi, R.;
Ma, Z.-X.; Hsung, R. P. Org. Lett. 2012, 14, 252.