P450 Oxidation of Dihydrotestosterone
Waxman, D. J. (1986) Characterization of rat and human liver microsomal
cytochrome P-450 forms involved in nifedipine oxidation, a prototype for
genetic polymorphism in oxidative drug metabolism. J. Biol. Chem. 261,
5051–5060
is in the electronics and the pucker of the A ring (Fig. 18).
Reduction of the ⌬4,5 bond remarkably shifts the sites of oxida-
tion to the attached axial () methyl groups (18 and 19), which
are chemically more difficult to oxidize than methylenes due to
C-H bond strength (54, 55). This specificity was unexpected
and argues for caution in relying on predictions of P450 reac-
tion sites.
15. Waxman, D. J., Attisano, C., Guengerich, F. P., and Lapenson, D. P. (1988)
Cytochrome P-450 steroid hormone metabolism catalyzed by human liver
microsomes. Arch. Biochem. Biophys. 263, 424–436
16. Ged, C., Rouillon, J. M., Pichard, L., Combalbert, J., Bressot, N., Bories, P.,
Michel, H., Beaune, P., and Maurel, P. (1989) The increase in urinary
excretion of 6-hydroxycortisol as a marker of human hepatic cyto-
chrome P450IIIA induction. Br. J. Clin. Pharmacol. 28, 373–387
17. Krauser, J. A., and Guengerich, F. P. (2005) Cytochrome P450 3A4-cata-
lyzed testosterone 6-hydroxylation. Stereochemistry, kinetic deuterium
isotope effects, and rate-limiting steps. J. Biol. Chem. 280, 19496–19506
18. Krauser, J. A., Voehler, M., Tseng, L. H., Schefer, A. B., Godejohann, M.,
and Guengerich, F. P. (2004) 1-Hydroxylation of testosterone by human
cytochrome P450 3A4. Eur. J. Biochem. 271, 3962–3969
In conclusion, we report several oxidations of the important
androgen dihydrotestosterone. Several interesting reactions
occur with the steroid aromatase, P450 19A1. One of these
products (⌬1,10-dehydro 19-nordihydrotestosterone, Fig. 4)
was also formed in liver microsomes. Two major liver micro-
somal products, the 18- and 19-alcohols, were also detectable in
vivo, in plasma and urine. Because of the variability of P450 3A4
activity among humans (56, 57), variation in the rates of degra-
dation may occur (Table 1) and influence the homeostasis of
dihydrotestosterone.
19. Ghosh, D., Griswold, J., Erman, M., and Pangborn, W. (2009) Structural
basis for androgen specificity and oestrogen synthesis in human aroma-
tase. Nature 457, 219–223
20. Yano, J. K., Wester, M. R., Schoch, G. A., Griffin, K. J., Stout, C. D., and
Johnson, E. F. (2004) The structure of human microsomal cytochrome
P450 3A4 determined by X-ray crystallography to 2.05-Å resolution.
J. Biol. Chem. 279, 38091–38094
Acknowledgments—We thank M. V. Martin and L. M. Folkmann for
preparing NADPH-P450 reductase, D. Stec for assistance with some of
the NMR spectroscopy, M. W. Calcutt for assistance with MS, and K.
Trisler for assistance in preparation of the manuscript.
21. Williams, P. A., Cosme, J., Vinkovic, D. M., Ward, A., Angove, H. C., Day,
P. J., Vonrhein, C., Tickle, I. J., and Jhoti, H. (2004) Crystal structures of
human cytochrome P450 3A4 bound to metyrapone and progesterone.
Science 305, 683–686
REFERENCES
22. Ekroos, M., and Sjögren, T. (2006) Structural basis for ligand promiscuity
in cytochrome P450 3A4. Proc. Natl. Acad. Sci. U.S.A. 103, 13682–13687
23. Sevrioukova, I. F., and Poulos, T. L. (2012) Structural and mechanistic
insights into the interaction of cytochrome P450 3A4 with bromoer-
gocryptine, a type I ligand. J. Biol. Chem. 287, 3510–3517
1. Conney, A. H. (1967) Pharmacological implications of microsomal en-
zyme induction. Pharmacol. Rev. 19, 317–366
2. Miller, J. A. (1970) Carcinogenesis by chemicals. An overview. G. H. A.
Clowes Memorial Lecture. Cancer Res. 30, 559–576
24. Russell, D. W., and Wilson, J. D. (1994) Steroid 5␣-reductase. Two genes/
two enzymes. Annu. Rev. Biochem. 63, 25–61
3. Ortiz de Montellano, P. R. (ed) (2005) Cytochrome P450: Structure, Mech-
anism, and Biochemistry, 3rd ed., Kluwer Academic/Plenum Publishers,
New York
25. Andersson, S., Berman, D. M., Jenkins, E. P., and Russell, D. W. (1991)
Deletion of steroid 5␣-reductase 2 gene in male pseudohermaphroditism.
Nature 354, 159–161
4. Nebert, D. W., and Russell, D. W. (2002) Clinical importance of the cyto-
chromes P450. Lancet 360, 1155–1162
26. Frye, S. V. (2006) Discovery and clinical development of dutasteride, a
potent dual 5␣-reductase inhibitor. Curr. Top. Med. Chem. 6, 405–421
27. Jin, Y., and Penning, T. M. (2006) Multiple steps determine the overall rate
of the reduction of 5␣-dihydrotestosterone catalyzed by human type 3
3␣-hydroxysteroid dehydrogenase. Implications for the elimination of an-
drogens. Biochemistry 45, 13054–13063
5. Zhao, B., Lei, L., Kagawa, N., Sundaramoorthy, M., Banerjee, S., Nagy,
L. D., Guengerich, F. P., and Waterman, M. R. (2012) A three-dimensional
structure of steroid 21-hydroxylase (cytochrome P450 21A2) with binary
substrate occupancy reveals locations of disease-associated variants.
J. Biol. Chem. 287, 10613–10622
6. Guengerich, F. P. (2005) in Cytochrome P450: Structure, Mechanism, and
Biochemistry (Ortiz de Montellano, P. R., ed) 3rd Ed., pp. 377–530, Kluwer
Academic/Plenum Publishers, New York
28. Hanna, I. H., Teiber, J. F., Kokones, K. L., and Hollenberg, P. F. (1998) Role
of the alanine at position 363 of cytochrome P450 2B2 in influencing the
NADPH- and hydroperoxide-supported activities. Arch. Biochem. Bio-
phys. 350, 324–332
7. Guengerich, F. P., and Cheng, Q. (2011) Orphans in the human cyto-
chrome P450 family. Approaches to discovering function and relevance to
pharmacology. Pharmacol. Rev. 63, 684–699
29. Parikh, A., Gillam, E. M., and Guengerich, F. P. (1997) Drug metabolism by
Escherichia coli expressing human cytochromes P450. Nat. Biotechnol. 15,
784–788
8. Ryan, K. J. (1958) Conversion of androstenedione to estrone by placental
microsomes. Biochim. Biophys. Acta 27, 658–659
30. Guengerich, F. P., and Bartleson, C. J. (2007) in Principles and Methods of
Toxicology (Hayes, A. W., ed) 5th Ed., pp. 1981–2048, CRC Press, Boca
Raton, FL
9. Brodie, A. M. (1993) Aromatase, its inhibitors and their use in breast
cancer treatment. Pharmacol. Ther. 60, 501–515
10. Ortiz de Montellano, P. R., and De Voss, J. J. (2005) in Cytochrome P450:
Structure, Mechanism, and Biochemistry (Ortiz de Montellano, P. R., ed) 31. Knox, L. H., Blossey, E., Carpio, H. Cervantes, L., Crabbé, P., Velarde, E.,
3rd Ed., pp. 183–245, Kluwer Academic/Plenum Publishers, New York
11. Sohl, C. D., and Guengerich, F. P. (2010) Kinetic analysis of the three-step
steroid aromatase reaction of human cytochrome P450 19A1. J. Biol.
Chem. 285, 17734–17743
and Edwards, J. A. (1965) Steroids. CCLXXVIII. Reductions of 19-substi-
tuted androst-4-en-3-ones and related compunds. J. Org. Chem. 30,
2198–2205
32. Gottlieb, H. E., Kotlyar, V., and Nudelman, A. (1997) NMR chemical shifts
of common laboratory solvents as trace impurities. J. Org. Chem. 62,
7512–7515
12. Williams, J. A., Hyland, R., Jones, B. C., Smith, D. A., Hurst, S., Goosen,
T. C., Peterkin, V., Koup, J. R., and Ball, S. E. (2004) Drug-drug interactions
for UDP-glucuronosyltransferase substrates. A pharmacokinetic explana- 33. Oh, S. S., and Robinson, C. H. (1994) Synthesis of and chemical model
tion for typically observed low exposure (AUCi/AUC) ratios. Drug Metab.
Dispos. 32, 1201–1208
reaction studies with 3-deoxyandrogens. Evidence supporting a 2,3-eno-
lization hypothesis in human placental aromatase catalyasis. J. Chem. Soc.
Perkin Trans. 1, 2237–2243
13. Bodin, K., Andersson, U., Rystedt, E., Ellis, E., Norlin, M., Pikuleva, I.,
Eggertsen, G., Björkhem, I., and Diczfalusy, U. (2002) Metabolism of 4- 34. Tang, Z., and Guengerich, F. P. (2010) Dansylation of unactivated alcohols
hydroxycholesterol in humans. J. Biol. Chem. 277, 31534–31540
for improved mass spectral sensitivity and application to analysis of cyto-
14. Guengerich, F. P., Martin, M. V., Beaune, P. H., Kremers, P., Wolff, T., and
chrome P450 oxidation products in tissue extracts. Anal. Chem. 82,
29566 JOURNAL OF BIOLOGICAL CHEMISTRY
VOLUME 287•NUMBER 35•AUGUST 24, 2012