Journal of the American Chemical Society
Communication
Honda, K.; Nishio, M. Tetrahedron 2000, 56, 6185. (c) Tewari, A. K.;
Dubey, R. Bioorg. Med. Chem. 2008, 16, 126. (d) Ozawa, T.; Okazaki, K.;
Kitaura, K. J. Comput. Chem. 2011, 32, 2774. (e) Ozawa, T.; Okazaki, K.;
Kitaura, K. Bioorg. Med. Chem. 2011, 19, 5231.
averaged bond length of C−H is longer than that of C−D by
∼0.005 Å. To obtain a rough estimate the size of this steric effect
on the CH−π interactions, we computed interaction energies for
our methane−benzene model while stretching or compressing
the interacting methane C−H bond (Δr = 0.005 Å). The
distance R between the plane of the benzene and the methyl
carbon was set to 3.493 Å (the closest approach for 1a) and
varied by 0.2 Å. The results are plotted in Figure S9 in the SI.
The interaction between methane and benzene became more
favorable (ΔΔEint < 0) as the C−H bond was compressed
(mimicking C−D bonds). The effect was negligible (∼0.01 kcal/
mol or less) for R ≥ 3.493 Å, but it grew as the benzene came
closer to the methane (ΔR < 0), becoming as large as 0.04 kcal/
mol for ΔR = −0.2 Å and Δr = −0.005 Å. Hence, this “steric
isotope effect” is negligible for the present systems but may
become significant in other systems with closer CH−π contacts.
The steric origin of this effect was confirmed using our symmetry-
adapted perturbation theory (SAPT) program (Figure S27).24
In conclusion, D/H isotope effects were not observed for the
CH−π interaction within three very sensitive small-molecule
model systems containing different CH−π interaction geo-
metries and environments. The experimental results were
corroborated by theoretical calculations that compared the
interaction energies of methane and benzene. The experimental
and theoretical systems in this study were designed to minimize
steric interactions. Thus, previous reports of isotope effects were
probably due to other factors (e.g., the different sizes of CH3 and
CD3 groups placed within more confined environments) rather
than attenuation of the CH−π interaction.25 This steric
hypothesis was supported by the calculations, which showed
that differences in energy arose when the interacting groups were
brought closer than the optimal CH−π interaction distance.
While the lack of an isotope effect eliminates the possibility of
using deuteration to enhance the CH−π interaction, it validates
the use of deuteration for spectroscopic and labeling purposes, as
this introduces a minimal perturbation of the system.26
(3) Nishio, M. Tetrahedron 2005, 61, 6923.
(4) (a) Umezawa, Y.; Tsuboyama, S.; Takahashi, H.; Uzawa, J.; Nishio,
M. Bioorg. Med. Chem. 1999, 7, 2021. (b) Umezawa, Y.; Tsuboyama, S.;
Takahashi, H.; Uzawa, J.; Nishio, M. Tetrahedron 1999, 55, 10047.
(c) Takahashi, O.; Kohno, Y.; Nishio, M. Chem. Rev. 2010, 110, 6049.
(5) (a) Brandl, M.; Weiss, M. S.; Jabs, A.; Suhnel, J.; Hilgenfeld, R. J.
Mol. Biol. 2001, 307, 357. (b) Fernandez, M. D.; Canada, F. J.; Jimenez-
Barbero, J.; Cuevas, G. J. Am. Chem. Soc. 2005, 127, 7379.
(6) Wade, D. Chem.-Biol. Interact. 1999, 117, 191.
(7) (a) Rechavi, D.; Scarso, A.; Rebek, J., Jr. J. Am. Chem. Soc. 2004,
126, 7738. (b) Zhao, Y. L.; Houk, K. N.; Rechavi, D.; Scarso, A.; Rebek,
J., Jr. J. Am. Chem. Soc. 2004, 126, 11428.
(8) Haino, T.; Fukuta, K.; Iwamoto, H.; Iwata, S. Chem.Eur. J. 2009,
15, 13286.
(9) (a) Turowski, M.; Yamakawa, N.; Meller, J.; Kimata, K.; Ikegami,
T.; Hosoya, K.; Tanaka, N.; Thornton, E. R. J. Am. Chem. Soc. 2003, 125,
13836. (b) Iyer, S. S.; Zhang, Z. P.; Kellogg, G. E.; Karnes, H. T. J.
Chromatogr. Sci. 2004, 42, 383.
(10) (a) Liu, Y.; Warmuth, R. Org. Lett. 2007, 9, 2883. (b) Mugridge, J.
S.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2010, 132, 1182.
(11) Bhayana, B.; Ams, M. R. J. Org. Chem. 2011, 76, 3594.
(12) (a) Carroll, W. R.; Pellechia, P.; Shimizu, K. D. Org. Lett. 2008, 10,
3547. (b) Carroll, W. R.; Zhao, C.; Smith, M. D.; Pellechia, P. J.;
Shimizu, K. D. Org. Lett. 2011, 13, 4320.
(13) (a) Eto, M.; Setoguchi, K.; Harada, A.; Sugiyama, E.; Harano, K.
Tetrahedron Lett. 1998, 39, 9751. (b) Yoshitake, Y.; Misaka, J.;
Setoguchi, K.; Abe, M.; Kawaji, T.; Eto, M.; Harano, K. J. Chem. Soc.,
Perkin Trans. 2 2002, 1611.
(14) (a) Grossmann, G.; Potrzebowski, M. J.; Olejniczak, S.;
Ziolkowska, N. E.; Bujacz, G. D.; Ciesielski, W.; Prezdo, W.; Nazarov,
V.; Golovko, V. New J. Chem. 2003, 27, 1095. (b) Srivastav, K. K.;
Verma, A. K.; Verma, S. M. Indian J. Chem., Sect. B 1993, 32, 1143.
(c) Kishikawa, K.; Yoshizaki, K.; Kohmoto, S.; Yamamoto, M.;
Yamaguchi, K.; Yamadab, K. J. Chem. Soc., Perkin Trans. 1 1997, 1233.
(15) The crystal structures of 1a and 3a were reported previously.14a,c
(16) The crystal structure of 2a contained three different folded
conformers that formed intramolecular CH−π interactions with slightly
different geometries and distances; only one is shown in Figure 1b.
(17) (a) Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100, 4253. (b) Nishio,
M. CrystEngComm 2004, 6, 130.
(18) (a) Bauer, M.; Bertario, A.; Boccardi, G.; Fontaine, X.; Rao, R.;
Verrier, D. J. Pharm. Biomed. Anal. 1998, 17, 419. (b) Rizzo, V.; Pinciroli,
V. J. Pharm. Biomed. Anal. 2005, 38, 851. (c) Soininen, P.; Haarala, J.;
Vepsalainen, J.; Niemitz, M.; Laatikainen, R. Anal. Chim. Acta 2005, 542,
178.
(19) Integration of o-methyl groups gave similar folded/unfolded
ratios. However, o-methyl peak integrations could not be used for
comparisons because this peak is absent in the deuterated balances.
(20) A third reason that this explanation is unlikely is that it requires
the attractive CD−π interaction to be weaker than the CH−π
interaction. However, all reports that have observed deuterium isotope
effects for the CH−π interaction have found the opposite trend.
(21) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77,
3865.
ASSOCIATED CONTENT
■
S
* Supporting Information
1
Experimental details, H and 13C NMR spectra, X-ray data
(CIF), and van’t Hoff plots for balances 1−4. This material is
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was supported by the National Science Foundation
(CHE 0911616 and CHE 1011360).
■
(22) Grimme, S. J. Comput. Chem. 2006, 27, 1787.
(23) Ringer, A. L.; Figgs, M. S.; Sinnokrot, M. O.; Sherrill, C. D. J. Phys.
Chem. A 2006, 110, 10822−10828.
REFERENCES
■
(1) (a) Nishio, M.; Hirota, M.; Umezawa, Y. The CH/π Interaction.
Evidence, Nature, and Consequences; Wiley-VCH: New York, 1998.
(b) Nishio, M.; Hirota, M. Tetrahedron 1989, 45, 7201. (c) Nishio, M.;
Umezawa, Y.; Honda, K.; Tsuboyama, S.; Suezawa, H. CrystEngComm
2009, 11, 1757. (d) Nishio, M. Phys. Chem. Chem. Phys. 2011, 13, 13873.
(e) Salonen, L. M.; Ellermann, M.; Diederich, F. Angew. Chem., Int. Ed.
2011, 50, 4808.
(24) Hohenstein, E. G.; Parrish, R. M.; Sherrill, C. D.; Turney, J. M.;
Schaefer, H. F., III. J. Chem. Phys. 2011, 135, No. 174107.
(25) (a) Turowski, M.; Yamakawa, N.; Meller, J.; Kimata, K.; Ikegami,
T.; Hosoya, K.; Tanaka, N.; Thornton, E. R. J. Am. Chem. Soc. 2003, 125,
13836. (b) Iyer, S. S.; Zhang, Z. P.; Kellogg, G. E.; Karnes, H. T. J.
Chromatogr. Sci. 2004, 42, 383.
(26) Ruschak, A. M.; Kay, L. E. J. Biomol. NMR 2010, 46, 75.
(2) (a) Nishio, M.; Umezawa, Y.; Hirota, M.; Takeuchi, Y. Tetrahedron
1995, 51, 8665. (b) Takahashi, H.; Tsuboyama, S.; Umezawa, Y.;
14309
dx.doi.org/10.1021/ja305788p | J. Am. Chem. Soc. 2012, 134, 14306−14309