(i) B. M. Kim, S. F. Williams and S. Masamune, in ref. 1f, pp. 239–275
( j) M. W. Rathke and P. Weipert, in ref. 1f, pp. 277–299 (k) I. Paterson,
in ref. 1f, pp. 301–319 (l) A. S. Franklin and I. Paterson, Contemp. Org.
Synth., 1994, 1, 317–338; (m) M. Braun, in Houben-Weyl’s Methods of
Organic Chemistry, Stereoselective Synthesis, ed. G. Helmchen,
R. W. Hoffmann, J. Mulzer and E. Schaumann, Georg Thieme Verlag,
Stuttgart, 1996, vol. 3, pp. 1603–1666 and 1713–1735; (n) R. Mahrwald,
Chem. Rev., 1999, 99, 1095–1120; (o) C. Palomo, M. Oiarbide and
J. M. García, Chem.–Eur. J., 2002, 8, 36–44; (p) C. Palomo, M. Oiarbide
and J. M. García, Chem. Soc. Rev., 2004, 33, 65–75; (q) Modern Aldol
Reactions, ed. R. Mahrwald, Wiley-VCH, Weinheim, 2004;
(r) E. M. Carreira, A. Fettes and C. Marti, Org. React., 2006, 67, 1–216;
(s) D. A. Evans, G. Helmchen, M. Ruping and J. Wolfgang, in Asym-
metric Synthesis, ed. M. Christmann and S. Bräse, Wiley-VCH, Wein-
heim, 2007, pp. 3–9; (t) J. Mlynarski and J. Paradowska, Chem. Soc.
Rev., 2008, 37, 1502–1511; (u) L. M. Geary and P. G. Hultin, Tetra-
hedron: Asymmetry, 2009, 20, 131–173; (v) T. Brodmann, M. Lorenz,
R. Schaeckel, S. Simsek and M. Kalesse, Synlett, 2009, 174–192;
(w) X. Ariza, J. Garcia, P. Romea and F. Urpi, Synthesis, 2011, 2175–
2191; (x) J. M. Garcia, M. Oiarbide and C. Palomo, Angew. Chem., Int.
Ed., 2011, 50, 8790–8792; (y) For a recent review on acyclic stereocen-
trol in aldol and other reaction types, see: A. G. O’Brien, Tetrahedron,
2011, 67, 9639–9667.
2 For recent reviews on various organocatalytic processes, including aldol
reactions, see: (a) G. Guillena, C. Nájera and D. J. Ramón, Tetrahedron:
Asymmetry, 2007, 18, 2249–2293; (b) D. Enders and A. A. Narine,
J. Org. Chem., 2008, 73, 7857–7870; (c) M. Gruttadauria, F. Giacalone
and R. Noto, Adv. Synth. Catal., 2009, 351, 33–57; (d) A.-N. Alba,
X. Companyo, M. Viciano and R. Rios, Curr. Org. Chem., 2009, 13,
1432–1474; (e) M. Raj and V. K. Singh, Chem. Commun., 2009, 6687–
6703; (f) S. G. Zlotin, A. S. Kucherenko and I. P. Beletskaya, Russ.
Chem. Rev., 2009, 78, 737–784; (g) C. Grondal, M. Jeanty and
D. Enders, Nat. Chem., 2010, 2, 167–178; (h) B. M. Trost and
C. S. Brindle, Chem. Soc. Rev., 2010, 39, 1600–1632; (i) X. H. Chen,
J. Yu and L. Z. Gong, Chem. Commun., 2010, 46, 6437–6448.
3 Organocatalytic aldol processes may have played a key role in the origin
of chirality of biomolecules during prebiotic times. See: M. Mauksch,
S. Wei, M. Freund, A. Zamfir and S. B. Tsogoeva, Orig. Life Evol.
Biosph., 2010, 40, 79–91. See also: C. Anastasi, F. F. Buchet,
M. A. Crowe, A. L. Parkes, M. W. Powner, J. M. Smith and
J. D. Sutherland, Chem. Biodiversity, 2007, 4, 721–739.
55, 481–493; (b) J. M. Goodman, S. D. Kahn and I. Paterson, J. Org.
Chem., 1990, 55, 3295–3303; (c) F. Bernardi, M. A. Robb, G. Suzzi-
Valli, E. Tagliavini, C. Trombini and A. Umani-Ronchi, J. Org. Chem.,
1991, 56, 6472–6475; (d) A. Bernardi, C. Gennari, J. M. Goodman and
I. Paterson, Tetrahedron: Asymmetry, 1995, 6, 2613–2636;
(e) C. Gennari, S. Ceccarelli, U. Piarulli and K. Aboutayab, J. Braz.
Chem. Soc., 1998, 9, 319–326; (f) V. J. Cee, C. J. Cramer and
D. A. Evans, J. Am. Chem. Soc., 2006, 128, 2920–2930;
(g) J. M. Goodman and R. S. Paton, Chem. Commun., 2007, 2124–2126.
13 In all discussions in this paper, no specific differentiation is made
between the purely steric Felkin–Anh model (for aldehydes bearing all-
carbon substituents) and the stereoelectronic “polar Felkin–Anh” model
(for aldehydes bearing α-heteroatoms): (a) M. Chérest, H. Felkin and
N. Prudent, Tetrahedron Lett., 1968, 9, 2199–2204; (b) N. T. Anh, Top.
Curr. Chem., 1980, 88, 145–162; (c) A. Mengel and O. Reiser, Chem.
Rev., 1999, 99, 1191–1223. See also: R. J. Smith, M. Trzoss, M. Bühl
and S. Bienz, Eur. J. Org. Chem., 2002, 2770–2775.
14 (a) H. B. Bürgi, J. D. Dunitz and E. Shefter, J. Am. Chem. Soc., 1973,
95, 5065–5067; (b) H. B. Bürgi, J. D. Dunitz, J. M. Lehn and G. Wipff,
Tetrahedron, 1974, 30, 1563–1572; (c) R. E. Gawley and J. Aubé, Prin-
ciples of Asymmetric Synthesis, Pergamon, 1996, ch. 4 and 5.
15 (a) J. W. Cornforth, R. H. Cornforth and K. K. Mathew, J. Chem. Soc.,
1959, 112–127. For theoretical refinements of the model, see:
(b) M. N. Paddon-Row, N. G. Rondan and K. N. Houk, J. Am. Chem.
Soc., 1982, 104, 7162–7166; (c) K. N. Houk, M. N. Paddon-Row,
N. G. Rondan, Y.-D. Wu, F. K. Brown, D. C. Spellmeyer, J. T. Metz,
Y. Li and R. J. Longarich, Science, 1986, 231, 1108–1117.
16 N. A. Van Draanen, S. Arseniyadis, M. T. Crimmins and
C. H. Heathcock, J. Org. Chem., 1991, 56, 2499–2506. For another
example which shows the importance of dipole alignment in aldol TSs,
see: R. K. Boeckman, Jr. and B. T. Connell, J. Am. Chem. Soc., 1995,
117, 12368–12369.
17 Cornforth’s model has been previously applied to reactions of α-oxyge-
nated aldehydes with achiral allylboron compounds: (a) W. R. Roush,
M. A. Adam, A. E. Walts and D. J. Harris, J. Am. Chem. Soc., 1986, 108,
3422–3434; (b) H. Brinkmann and R. W. Hoffmann, Chem. Ber., 1990,
123, 2395–2401; (c) A. N. Thadani and R. A. Batey, Tetrahedron Lett.,
2003, 44, 8051–8055; (d) The higher stability of Cornforth-like transition
structures in some additions of allylboron reagents to α-oxygenated alde-
hydes has also received theoretical support: B. W. Gung and X. Xue,
Tetrahedron: Asymmetry, 2001, 12, 2955–2959; (e) For more detailed
accounts of the diastereoselective reactions of allylboron compounds, see:
W. R. Roush, in ref. 1f, pp. 1–54, and W. R. Roush, in Houben-Weyl’s
Methods of Organic Chemistry, Stereoselective Synthesis, ed. G. Helm-
chen, R. W. Hoffmann, J. Mulzer and E. Schaumann, Georg Thieme
Verlag, Stuttgart, 1996, vol. 3, pp. 1410–1486, and references cited
therein; (f) For a related situation in the addition of an allenylstannane,
see: J. A. Marshall and X.-J. Wang, J. Org. Chem., 1991, 56, 3211–3213.
18 M. Carda, E. Falomir, J. Murga, E. Castillo, F. González and J. A. Marco,
Tetrahedron Lett., 1999, 40, 6845–6848.
19 Ketone 13 and its enantiomer have been used by other groups for the syn-
thesis of natural products. See: (a) C. J. Forsyth, J. Hao and J. Aiguadé,
Angew. Chem., Int. Ed., 2001, 40, 3663–3667; (b) A. A. Jaworski and
J. D. Burch, Tetrahedron Lett., 2007, 48, 8787–8789.
20 For uses of ketone 15 in the synthesis of natural products, see:
(a) J. Murga, P. Ruiz, E. Falomir, M. Carda, G. Peris and J. A. Marco,
J. Org. Chem., 2004, 69, 1987–1992; (b) P. Ruiz, J. Murga, M. Carda
and J. A. Marco, J. Org. Chem., 2005, 70, 713–716.
4 (a) For reviews on boron aldol reactions, see: C. J. Cowden and
I. Paterson, Org. React., 1997, 51, 1–200; (b) A. Abiko, Acc. Chem. Res.,
2004, 37, 387–395.
5 (a) J. A. Marco, M. Carda, E. Falomir, C. Palomo, M. Oiarbide,
J. A. Ortiz and A. Linden, Tetrahedron Lett., 1999, 40, 1065–1068;
(b) M. Carda, J. Murga, E. Falomir and F. González, Tetrahedron, 2000,
56, 677–683; (c) J. Murga, E. Falomir, M. Carda and J. A. Marco, Tetra-
hedron: Asymmetry, 2002, 13, 2317–2327; (d) J. Murga, E. Falomir,
F. González, M. Carda and J. A. Marco, Tetrahedron, 2002, 58, 9697–
9707.
6 (a) Prior to our work,5 only a single precedent of formation of Z boron
enolates of ketones with Chx2BCl had been reported: I. Paterson,
D. J. Wallace and S. M. Velázquez, Tetrahedron Lett., 1994, 35, 9083–
9086; (b) We have produced evidence that this phenomenon may be
general with suitably protected α-oxygenated ketones: J. Murga,
E. Falomir, M. Carda, F. González and J. A. Marco, Org. Lett., 2001, 3,
901–904.
7 Other ketones structurally related to erythrulose behave in the same way:
(a) M. Carda, J. Murga, E. Falomir, F. González and J. A. Marco, Tetra-
hedron: Asymmetry, 2000, 11, 3211–3220; (b) M. Carda, F. González,
R. Sánchez and J. A. Marco, Tetrahedron: Asymmetry, 2002, 13, 1005–
1010; (c) S. Díaz-Oltra, J. Murga, E. Falomir, M. Carda, G. Peris and
J. A. Marco, J. Org. Chem., 2005, 70, 8130–8139.
8 J. A. Marco, M. Carda, S. Díaz-Oltra, J. Murga, E. Falomir and
H. Roeper, J. Org. Chem., 2003, 68, 8577–8582.
9 S. Díaz-Oltra, M. Carda, J. Murga, E. Falomir and J. A. Marco, Chem.–
Eur. J., 2008, 14, 9240–9254.
21 R. W. Hoffmann, Chem. Rev., 1989, 89, 1841–1860.
22 E. P. Lodge and C. H. Heathcock, J. Am. Chem. Soc., 1987, 109, 3353–
3361. The “non-Anh” label refers to transition structures in which attack
takes place anti to a substituent which neither has the lowest lying σ*C–X
orbital (for α-heteroatom-substituted aldehydes) nor is the sterically bulk-
iest one (for aldehydes not bearing α-heteroatoms). See also ref. 13c.
23 W. R. Roush, J. Org. Chem., 1991, 56, 4151–4157. The quantitative
importance of the syn pentane interactions is underscored in the cases
under study here by the fact that enolate 1B does not react with pivalalde-
hyde.5 Indeed, if a TS is drawn for the aldol reaction with this aldehyde,
a syn pentane interaction will always be present for all rotamers around
the tBu–CO bond.
10 The same stereochemical course was also observed in aldol reactions of
other ketones related to 17.
11 H. E. Zimmerman and M. D. Traxler, J. Am. Chem. Soc., 1957, 79,
1920–1923.
12 For theoretical studies on the transition states of boron aldol reactions,
see: (a) Y. Li, M. N. Paddon-Row and K. N. Houk, J. Org. Chem., 1990,
24 For two interesting reviews on the conformational aspects of open-chain
carbon backbones, see: (a) R. W. Hoffmann, M. Stahl, U. Schopfer and
G. Frenking, Chem.–Eur. J., 1998, 4, 559–566; (b) R. W. Hoffmann,
Angew. Chem., Int. Ed., 2000, 39, 2054–2070.
6944 | Org. Biomol. Chem., 2012, 10, 6937–6944
This journal is © The Royal Society of Chemistry 2012