compounds, of which the carbon analogues cannot be
synthesized or are very difficult to make. Thus, as a
consequence, the development of synthetic methods for
silacyclic compounds remains one of the most important
frontiers in synthetic chemistry.1À7
Vinylsilaneis animportant building blockfor construct-
ing CÀC bonds along with desilylation of the remaining
silyl moiety.8À10 As shown in Scheme 1, vinylsilanes have
been used in the Hiyama cross-coupling reaction to make
CÀC bonds using the silyl group as a leaving group.8
Conceptually, the MizorokiÀHeck reaction is a good
choice to make CÀC bonds while the silyl group remains
in the product.8a,9,10 Thus, silacyclic skeletons can be
constructed via an intramolecular MizorokiÀHeck reac-
tion of vinylsilanes (Scheme 1).9 However, it is rarely
reported that vinylsilane participates in the MizorokiÀ
Heck reaction.9,10 Among all those examples reported on
intermolecular MizorokiÀHeck reactions, formation of new
CÀC bonds at the β-position of vinylsilane is predominate.10
To the best of our knowledge, there is only one example of
the formation of a CÀC bond at the R-position of
vinylsilane.9 Meanwhile, this is also the only report of an
intramolecular MizorokiÀHeck reaction leading to a five-
membered silacyclic ring as a byproduct in <30% yield.9
(3) For reviews on siloles, see: (a) Shimizu, M.; Hiyama, T. Synlett
2012, 23, 973–989. (b) Corey, J. Y. Adv. Organomet. Chem. 2011, 59, 1–
180. (c) Corey, J. Y. Adv. Organomet. Chem. 2011, 59, 181–328. (d) Liu,
J.; Lam, J. W. Y.; Tang, B. Z. J. Inorg. Organomet. Polym. 2009, 19, 249–
285. (e) Chen, J.; Cao, Y. Macromol. Rapid Commun. 2007, 28, 1714–
1742. (f) Yamaguchi, S.; Xu, C.; Okamoto, T. Pure Appl. Chem. 2006, 78,
ꢀ
721–730. (g) Hissler, M.; Dyer, P. W.; Reau, R. Coord. Chem. Rev. 2003,
244, 1–44. (h) Yamaguchi, S.; Tamao, K. J. Organomet. Chem. 2002,
653, 223–228. (i) Yamaguchi, S.; Tamao, K. J. Chem. Soc., Dalton Trans.
1998, 22, 3693–3702.
Scheme 1. Hiyama Cross-Coupling and MizorokiÀHeck
Reaction of Vinylsilanes; Construction of Silacycles via a
Intramolecular MizorokiÀHeck Reaction
(4) For selected examples on benzosiloles, see: (a) Liang, Y.; Geng,
W.; Wei, J.; Xi, Z. Angew. Chem., Int. Ed. 2012, 51, 1934–1937. (b) Liang,
Y.; Zhang, S.; Xi, Z. J. Am. Chem. Soc. 2011, 133, 9204–9207. (c)
Shimizu, M.; Mochida, K.; Katoh, M.; Hiyama, T. Sci. China Chem.
2011, 54, 1937–1947. (d) Shimizu, M.; Mochida, K.; Hiyama, T. J. Phys.
Chem. C 2011, 115, 11265–11274. (e) Liu, J.; Zhong, Y.; Lam, J. W. Y.;
Lu, P.; Hong, Y.; Yu, Y.; Yue, Y.; Faisal, M.; Sung, H. H. Y.; Williams,
I. D.; Wong, K. S.; Tang, B. Z. Macromolecules 2010, 43, 4921–4936. (f)
Mochida, K.; Shimizu, M.; Hiyama, T. J. Am. Chem. Soc. 2009, 131,
8350–8351. (g) Hudrlik, P. F.; Dai, D.; Hudrlik, A. M. J. Organomet.
Chem. 2006, 691, 1257–1264. (h) Wang, Z.; Fang, H.; Xi, Z. Tetrahedron
Lett. 2005, 46, 499–501. (i) Xu, C.; Wakamiya, A.; Yamaguchi, S. J. Am.
Chem. Soc. 2005, 127, 1638–1639. (j) Hoshi, T.; Nakamura, T.; Suzuki,
T.; Ando, M.; Hagiwara, H. Organometallics 2000, 19, 4483–4487. (k)
Barton, T. J.; Groh, B. L. Organometallics 1985, 4, 575–580.
(5) For reviews, see: (a) Tacke, R.; Metz, S. Chem. Biodiversity 2008,
5, 920–941. (b) Doszczak, L.; Gasperi, T.; Saint-Dizier, A.; Loreto,
M. A.; Enders, D. In Perspectives in Flavor and Fragrance Research;
Kraft, P., Swift, K. A. D., Eds.; Verlag Helvetica Chimica Acta: Zurich,
Wiley-VCH: Weinheim, 2005; pp 89À103. (c) Frater, G.; Bajgrowicz,
J. A.; Kraft, P. Tetrahedron 1998, 54, 7633–7703.
(6) For selected examples, see: (a) Ghosh, P.; Shabat, D.; Kumar, S.;
Sinha, S. C.; Grynszpan, F.; Li, J.; Noodleman, L.; Keinan, E. Nature
1996, 382, 339–341. (b) Wannagat, U.; Munstedt, R.; Harder, U. Liebigs
Ann. Chem. 1985, 5, 950–958. (c) Wrobel, D.; Tacke, R.; Wannagat, U.;
Harder, U. Chem. Ber. 1982, 115, 1694–1704.
We have recently reported the synthesis of silole deriva-
tives via Pd-catalyzed cleavage of the SiÀMe bond and the
formation of six-membered silacycles via Pd-catalyzed
cleavage of the silyl C(sp3)ÀH bond (Scheme 2).4a,b,11 As
a continuation of our interest in this transition-metal cata-
lyzed cleavage of the SiÀC(sp3) bond and the silyl C(sp3)ÀH
bond, we investigated silyl compounds of different substi-
tuents on the silicon center. Interestingly, as given in
Scheme 2, when compound 1a substituted with a SiMe3
group was changed to compound 1b substituted with a
SiMe2(CHdCH2) group, neither product 2 nor product 4
was obtained under the same reaction conditions. Instead, a
new compound 3 obviously formed via the intramolecular
MizorokiÀHeck reaction, which was obtained in 28% and
50% yields, respectively. This new finding prompted us to
study this intramolecular MizorokiÀHeck reaction. Here,
we report our results on the synthesis of various silacycles
including benzosiloles, six- and eight-membered silacyclic
skeletons, via a Pd-catalyzed intramolecular MizorokiÀ
Heck reaction. Either the R- or β-positioned CÀC bond
€
(7) (a) Tacke, R.; Bertermann, R.; Burschka, C.; Dorrich, S.; Fischer,
€
€
M.; Muller, B.; Meyerhans, G.; Schepmann, D.; Wunsch, B.; Arnason,
I.; Bjornsson, R. ChemMedChem 2012, 7, 523–532. (b) Meanwell, N. A.
J. Med. Chem. 2011, 54, 2529–2591. (c) Helder, S. A.; Luis, B. M.; Vesa-
Pekka, L.; Anu, A. J.; Jarno, S.; Jouni, H. Curr. Drug Discovery Technol.
2011, 8, 228–249. (d) Franz, A. K. Curr. Opin. Drug Discovery Dev. 2007,
10, 654–671. (e) Bains, W.; Tacke, R. Curr. Opin. Drug Discovery Dev.
2003, 6, 526–543. (f) Showell, G. A.; Mills, J. S. Drug Discov. Today 2003,
€
€
8, 551–556. (g) Heinonen, P.; Sipila, H.; Neuvonen, K.; Lonnberg, H.;
Cockroft, V. B.; Wurster, S.; Virtanen, R.; Savola, M. K. T.; Salonen,
J. S.; Savola, J. M. Eur. J. Med. Chem. 1996, 31, 725–729.
(8) (a) The MizorokiÀHeck Reaction; Oestrtin, M., Eds.; John Wiley &
Sons, Ltd.: Germany, 2009. (b) Hiyama, T. J. Organomet. Chem. 2002, 653,
58–61. (c) Hiyama, T. In Metal-Catalyzed Cross-Coupling Reactions;
Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, Germany, 1998;
Chapter 10. (d) Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1988, 53, 920–923.
(9) Teng, Z.; Keese, R. Helv. Chim. Acta 1999, 82, 515–521.
(10) (a) Czech, A.; Ganicz, T.; Noskowska, M.; Stanczyk, W. A.;
Szelag, A. J. Organomet. Chem. 2009, 694, 3386–3389. (b) Pawluc, P.;
Hreczycho, G.; Suchecki, A.; Kubicki, M.; Marciniec, B. Tetrahedron
2009, 65, 5497–5502. (c) Lo, M. Y.; Sellinger, A. Synlett 2006, 18, 3009–
3012. (d) Battace, A.; Zair, T.; Doucet, H.; Santelli, M. J. Organomet.
Chem. 2005, 690, 3790–3802. (e) Itami, K.; Nokami, T.; Ishimura, Y.;
Mitsudo, K.; Kamei, T.; Yoshida., J. J. Am. Chem. Soc. 2001, 123,
11577–11585. (f) Itami, K.; Mitsudo, K.; Kamei, T.; Koike, T.; Nokami,
T.; Yoshida, J. J. Am. Chem. Soc. 2000, 122, 12013–12014. (g) Jeffery, T.
Tetrahedron Lett. 1999, 40, 1673–1676. (h) Yamashita, H.; Roan, B. L.;
Tanaka, M. Chem. Lett. 1990, 2175–2176. (i) Karabelas, K.; Hallberg,
A. Tetrahedron Lett. 1985, 26, 3131–3132. (j) Karabelas, K.; Westerlund,
C.; Hallberg, A. J. Org. Chem. 1985, 50, 3896–3900.
(11) Liang, Y.; Geng, W.; Wei, J.; Ouyang, K.; Xi, Z. Org. Biomol.
Chem. 2012, 10, 1537–1542.
Org. Lett., Vol. 14, No. 17, 2012
4573