ACS Chemical Biology
Articles
chromatography 20% to 40% EtOAc in hexanes did not separate the
product from nitroveratryl side products. This mixture was dissolved in
3 mL dioxane and 3 mL of 2 N NaOH and stirred for 15 min. The
reaction was quenched with 6 mL of 1 N HCl and diluted with 20 mL
of EtOAc. The organic phase was separated, and the aqueous phase
was washed with 20 mL of CH2Cl2. The combined organic phases
were dried over Na2SO4, concentrated under reduced pressure, and
filtered through a silica plug eluting with EtOAc followed by 0.5%
acetic acid in EtOAc. This residue (∼35 mg, 0.07 mmol) was dissolved
in 1 mL of DMSO and added to a reaction flask containing 0.5 mL of
chloroacetonitrile (7.9 mmol) and 0.5 mL of triethylamine (3.6
mmol). The reaction was allowed to stir at RT for 5 h. The reaction
was poured onto a dry column of silica and eluted with EtOAc to
(10) Hibbs, R. E., and Gouaux, E. (2011) Principles of activation and
permeation in an anion-selective Cys-loop receptor. Nature 474, 54−
60.
(11) Joshi, P. R., Suryanarayanan, A., Hazai, E., Schulte, M. K.,
Maksay, G., and Bikadi, Z. (2006) Interactions of Granisetron with an
agonist-free 5-HT3A receptor model. Biochemistry 45, 1099−1105.
(12) Maksay, G., Bikadi, Z., and Simonyi, M. (2003) Binding
interactions of antagonists with 5-hydroxytryptamine(3A) receptor
models. J. Recept. Signal Transduct. 23, 255−270.
(13) Thompson, A. J., Price, K. L., Reeves, D. C., Chan, S. L., Chau,
P. L., and Lummis, S. C. R. (2005) Locating an antagonist in the 5-
HT3 receptor binding site using modeling and radioligand binding. J.
Biol. Chem. 280, 20476−20482.
(14) Yan, D., and White, M. M. (2005) Spatial orientation of the
antagonist granisetron in the ligand-binding site of the 5-HT3
receptor. Mol. Pharmacol. 68, 365−371.
(15) Beene, D. L., Brandt, G. S., Zhong, W. G., Zacharias, N. M.,
Lester, H. A., and Dougherty, D. A. (2002) Cation-pi interactions in
ligand recognition by serotonergic (5-HT3A) and nicotinic acetylcho-
line receptors: The anomalous binding properties of nicotine.
Biochemistry 41, 10262−10269.
(16) Delorenzi, F. G., Bridal, T. R., and Spinelli, W. (1994) Block of
the delayed rectifier current (I-K) by the 5-HT3 antagonists
ondansetron and granisetron in feline ventricular myocytes. Br. J.
Pharmacol. 113, 527−535.
(17) Wyllie, D. J. A., and Chen, P. E. (2007) Taking the time to study
competitive antagonism. Br. J. Pharmacol. 150, 541−551.
(18) Barnes, N. M., Hales, T. G., Lummis, S. C. R., and Peters, J. A.
(2009) The 5-HT3 receptor - the relationship between structure and
function. Neuropharmacology 56, 273−284.
(19) Rojas, C., Stathis, M., Thomas, A. G., Massuda, E. B., Alt, J.,
Zhang, J., Rubenstein, E., Sebastiani, S., Cantoreggi, S., Snyder, S. H.,
and Slusher, B. (2008) Palonosetron exhibits unique molecular
interactions with the 5-HT3 receptor. Anesth. Analg. 107, 469−478.
(20) Ito, H., Akuzawa, S., Tsutsumi, R., Kiso, T., Kamato, T., Nishida,
A., Yamano, M., and Miyata, K. (1995) Comparative study of the
affinities of the 5-HT3 receptor antagonists, YM060 YM114 (KAE-
393), granisetron and ondansetron in rat vagus nerve and cerebral
cortex. Neuropharmacology 34, 631−637.
(21) Kilpatrick, G. J., Butler, A., Burridge, J., and Oxford, A. W.
(1990) 1-(m-Chlorophenyl)-biguanide, a potent high-affinity 5-HT3
receptor agonist. Eur. J. Pharmacol. 182, 193−197.
(22) Miles, T. F.; Bower, K. S.; Lester, H. A.; Dougherty, D. A.,
(2012) A coupled array of noncovalent interactions impacts the
function of the 5-HT3A serotonin receptor in an agonist-specific way.
ACS Chem. Neurosci. In press. DOI: 10.1021/cn3000586.
(23) Xiu, X. A., Puskar, N. L., Shanata, J. A. P., Lester, H. A., and
Dougherty, D. A. (2009) Nicotine binding to brain receptors requires
a strong cation-pi interaction. Nature 458, 534−537.
(24) Dougherty, D. A. (2008) Physical organic chemistry on the
brain. J. Org. Chem. 73, 3667−73.
(25) Dougherty, D. A. (2008) Cys-loop neuroreceptors: structure to
the rescue? Chem. Rev. 108, 1642−53.
(26) Choi-Sledeski, Y.-M.; Gardner, C. J.; Liang, G.; Poli, G. B.;
Shum, P. W.-K.; Stoklosa, G. T.; Zhao, Z. (Sanofi-Aventis, Fr.)
Preparation of aminomethylphenylpiperidinylindolylmethanone deriv-
atives for use as tryptase inhibitors. Patent WO 2011022449.
(27) Ricci, A., and Fochi, M. (2003) Reactions between organo-
magnesium reagents and nitroarenes: Past, present, and future. Angew.
Chem., Int. Ed. 42, 1444−1446.
(28) Gilchrist, T. L., Lingham, D. A., and Roberts, T. G. (1979) Ethyl
3-Bromo-2-hydroxyiminopropanoate, a reagent for the preparation of
ethyl esters of alpha-amino acids. J. Chem. Soc., Chem. Commun.,
1089−1090.
1
recover 23 mg of a yellow solid (6%, 4 steps). H NMR (300 MHz,
DMSO-d6): δ 11.71 (s, 1H), 8.21 (d, J = 7.7 Hz, 1H), 7.68 (s, 1H),
7.23 (d, J = 2.0 Hz, 1H), 7.09 (s, 1H), 6.92−6.80 (m, 1H), 6.74−6.62
(m, 1H), 5.39−5.21 (m, 2H), 4.99 (s, 2H), 4.48−4.35 (m, 1H), 3.85
(s, 3H), 3.83 (s, 3H), 3.32−2.99 (m, 2H). 19F NMR (282 MHz,
DMSO-d6): δ −130.18 (dd, J = 22.4, 9.9 Hz), −138.53 (ddd, J = 22.6,
10.6, 3.1 Hz). 13C NMR (126 MHz, DMSO-d6): δ 171.56, 156.03,
153.83, 152.62 (d, J = 239.6 Hz), 148.15, 146.10 (dd, J = 238.5, 2.2
Hz), 139.55, 128.09, 126.70 (dd, J = 16.1, 12.2 Hz), 126.36, 118.82−
118.30 (m), 116.08, 110.61, 109.18, 108.59, 106.23 (dd, J = 18.8, 8.7
Hz), 103.90−103.23 (m), 63.15, 56.55, 55.30, 49.97, 27.84. HRMS
FAB(+) m/z for C23H20O8N4F2 found 518.1271, calculated 518.1249
(M+•).
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank S. Lummis for helpful discussions and input. This
work was supported by the National Institutes of Health (NS
34407 and DA19375).
REFERENCES
■
(1) Nichols, D. E., and Nichols, C. D. (2008) Serotonin receptors.
Chem. Rev. 108, 1614−1641.
(2) Thompson, A. J., and Lummis, S. C. R. (2006) 5-HT3 receptors.
Curr. Pharm. Design 12, 3615−3630.
(3) Thompson, A. J., Lester, H. A., and Lummis, S. C. R. (2010) The
structural basis of function in Cys-loop receptors. Q. Rev. Biophys. 43,
449−499.
(4) Niesler, B., Walstab, J., Combrink, S., Moller, D., Kapeller, J.,
Rietdorf, J., Bonisch, H., Gothert, M., Rappold, G., and Bruss, M.
(2007) Characterization of the novel human serotonin receptor
subunits 5-HT3C, 5-HT3D, and 5-HT3E. Mol. Pharmacol. 72, 8−17.
(5) Jensen, A. A., Davies, P. A., Brauner-Osborne, H., and
Krzywkowski, K. (2008) 3B but which 3B? And that’s just one of
the questions: the heterogeneity of human 5-HT(3) receptors. Trends
Pharmacol. Sci. 29, 437−444.
(6) Machu, T. K. (2011) Therapeutics of 5-HT3 receptor
antagonists: Current uses and future directions. Pharmacol. Ther.
130, 338−347.
(7) Thompson, A. J., and Lummis, S. C. (2007) The 5-HT3 receptor
as a therapeutic target. Expert Opin. Ther. Targets 11, 527−40.
(8) Unwin, N. (2005) Refined structure of the nicotinic acetylcholine
receptor at 4 angstrom resolution. J. Mol. Biol. 346, 967−989.
(9) Hibbs, R. E., Sulzenbacher, G., Shi, J. X., Talley, T. T., Conrod, S.,
Kem, W. R., Taylor, P., Marchot, P., and Bourne, Y. (2009) Structural
determinants for interaction of partial agonists with acetylcholine
binding protein and neuronal alpha 7 nicotinic acetylcholine receptor.
EMBO J. 28, 3040−3051.
(29) Nowak, M. W., Gallivan, J. P., Silverman, S. K., Labarca, C. G.,
Dougherty, D. A., and Lester, H. A. (1998) In vivo incorporation of
unnatural amino acids into ion channels in Xenopus oocyte expression
system. Methods Enzymol. 293, 504−529.
1745
dx.doi.org/10.1021/cb300246j | ACS Chem. Biol. 2012, 7, 1738−1745