6842
F.-Q. Yuan et al. / Tetrahedron 68 (2012) 6837e6842
by heteroarenes to Pd(0) whose oxidative addition to allylic ace-
tates forms the
3-allylpalladium(II) complex B or C. Subsequently,
nucleophilic addition of heteroarenes to B or C affords the h2
allylpalladium(0) complex D. Finally, Pd(0) detaches from alkenes
to generate the corresponding allylated products 3, and the Pd(0)
thus regenerated goes into the next catalytic cycle.
Supplementary data
h
-
Supplementary data associated with this article can be found, in
References and notes
3. Conclusions
1. (a) Hegedus, L. S. Transition Metals in the Synthesis of Complex Organic Molecules;
University Sciences Books: Mill Valley, CA, 1994; (b) Trost, B. M.; Van Vranken,
D. L. Chem. Rev. 1996, 96, 395e422.
2. (a) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873e2920; (b) Eicher, T.;
Hauptmann, S. The Chemistry of Heterocycles; Wiley-VCH: Weinheim, 2003.
3. Yamamoto, H. Lewis Acids in Organic Synthesis; Wiley-VCH: Weinheim,
2000.
We have demonstrated that PdCl2 is a highly efficient catalyst for
the allylation of heteroarenes in the presence of 1:1 molar ratio of
reactants under base/acid, additive, and ligand-free conditions. The
results presented herein, together with our previous study19 clearly
illustrated that the protocol is generally applicable not only to a rich
range of N-, O-, and S-containing heteroarenes, but also to a broad
variety of allylic acetates. As a result, this method represents one of
the few examples for simple, universally applicable, clean, and
atom-efficient functionalization of heteroarenes. We believe that
due to the ubiquitous nature of heteroarenes in natural products,
pharmaceuticals, materials science, and coordination and catalytic
chemistry, the method presented herein would find practical ap-
plication in these areas. Currently, we are synthesizing some com-
plex natural products by using the protocol developed in this work.
Finally, mechanistic investigation showed that the reaction pro-
ceeds more likely via the Pd(0)-catalyzed TsujieTrost pathway. The
result would have further implications beyond this work and would
promote the development of more efficient processes for other
transition-metal-catalyzed cross-coupling reactions.
4. For selected examples using immobilized and nonimmobilized sulfonic acids,
ꢀ
ꢀ
see: (a) Sanz, R.; Martínez, A.; Miguel, D.; Alvarez-Gutierrez, J. M.; Rodríguez, F.
Adv. Synth. Catal. 2006, 348, 1841e1845; (b) Bras, J. L.; Muzart, J. Tetrahedron
2007, 63, 7942e7948; (c) Liu, Y.-L.; Liu, L.; Wang, Y.-L.; Han, Y.-C.; Wang, D.;
Chen, Y.-J. Green Chem. 2008, 10, 635e640.
5. For a representative example using Montmorillonite, see: Motokura, K.;
Nakagiri, N.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Org. Chem. 2007, 72,
6006e6015.
6. For an example using boronic acid, see: McCubbin, J. A.; Krokhin, O. V. Tetra-
hedron Lett. 2010, 51, 2447e2449.
7. For selected examples of In(III)-catalyzed allyaltions, see: (a) Yasuda, M.; Somyo,
T.; Baba, A. Angew. Chem., Int. Ed. 2006, 45, 793e796; (b) Yadav, J. S.; Reddy, B. V.
S.; Rao, K. V.; Rao, P. P.; Raj, K. S.; Prasad, A. R.; Prabhakar, A.; Jagadeesh, B. Synlett
2006, 3447e3450; (c) Yadav, J. S.; Reddy, B. V. S.; Basak, A. K.; Narsaiah, A. V.;
Prabhakar, A.; Jagadeesh, B. Tetrahedron Lett. 2005, 46, 639e641.
8. For AuCl3-catalyzed reactions, see: Rao, W.; Chan, P. W. H. Org. Biomol. Chem.
2008, 6, 2426e2433.
9. For Mo(II)- and Mo(IV)-catalyzed reactions, see: (a) Malkov, A. V.; Baxendale, I.
ꢁꢀ
ꢁ
ꢀ
R.; Dvorak, D.; Mansfield, D. J.; Kocovsky, P. J. Org. Chem. 1999, 64, 2737e2750;
ꢁ
ꢀ
(b) Malkov, A. V.; Davis, S. L.; Baxendale, I. R.; Mitchell, W. L.; Kocovsky, P. J. Org.
Chem. 1999, 64, 2751e2764; (c) Malkov, A. V.; Spoor, P.; Vinader, V.; Kocovsky, P.
J. Org. Chem. 1999, 64, 5308e5311.
ꢁ
ꢀ
4. Experimental section
4.1. General methods
10. For Ca(II)-catalyzed reaction, see: Niggemann, M.; Meel, M. J. Angew. Chem., Int.
Ed. 2010, 49, 3684e3687.
11. For Fe(III)-catalyzed reactions, see: (a) Thirupathi, P.; Kim, S. S. Tetrahedron 2010,
66, 2995e3003; (b) Jiang, Z.-Y.; Zhang, C.-H.; Gu, F.-L.; Yang, K.-F.; Lai, G.-Q.; Xu,
L.-W.; Xia, C.-G. Synlett 2010, 1251e1254.
12. For Pd(II)-catalyzed CꢁO bond formation of diaryl methyl alcohol with aliphatic
alcohols, see: Bikard, Y.; Mezaache, R.; Weibel, J.-M.; Benkouider, A.; Sirlin, C.;
Pale, P. Tetrahedron 2008, 64, 10224e10232.
13. Liu, Z.; Liu, L.; Shafiq, Z.; Wu, Y.-C.; Wang, D.; Chen, Y.-J. Tetrahedron Lett. 2007,
48, 3963e3967.
Solvents were purified and dried according to standard methods
prior to use. Reagents and catalysts were purchased from J&K
Chemical Ltd or Alfa Aesar, and were used without further purifi-
cation. Unless otherwise noted, the 1H NMR spectra were recorded
at 300, 400, 600 MHz in CDCl3 and the 13C NMR spectra were
recorded at 75, 100, 150 MHz in CDCl3 with TMS as internal stan-
dard. All shifts are given in parts per million. All coupling constants
(J values) were reported in Hertz (Hz). Column chromatography
was performed on silica gel 100 mesh.
14. Wenkert, E.; Angell, E. C.; Ferreira, V. F.; Michelotti, E. L.; Piettre, S. R.; Sheu, J.-H.;
Swindell, C. S. J. Org. Chem. 1986, 51, 2343e2351.
15. Onodera, G.; Imajima, H.; Yamanashi, M.; Nishibayashi, Y.; Hidai, M.; Uemura, S.
Organometallics 2004, 23, 5841e5848.
ꢁ
ꢀ
16. Malkov, A. V.; Baxendale, I. R.; Mansfield, D. J.; Kocovsky, P. J. Chem. Soc., Perkin
Trans. 1 2001, 10, 1234e1240.
17. (a) Billups, W. E.; Erkes, R. S.; Reed, L. E. Synth. Commun. 1980, 10, 147e154; (b)
Bandini, M.; Melloni, A.; Umani-Ronchi, A. Org. Lett. 2004, 6, 3199e3202; (c)
Kimura, M.; Futamata, M.; Mukai, R.; Tamaru, Y. J. Am. Chem. Soc. 2005, 127,
4592e4593; (d) Ma, S.; Yu, S.; Peng, Z.; Guo, H. J. Org. Chem. 2006, 71,
9865e9868; (e) Trost, B. M.; Quancard, J. J. Am. Chem. Soc. 2006, 128,
6314e6315; (f) Bandini, M.; Melloni, A.; Piccinelli, F.; Sinisi, R.; Tommasi, S.;
Umani-Ronchi, A. J. Am. Chem. Soc. 2006, 128, 1424e1425; (g) Cheung, H. Y.; Yu,
W.-Y.; Lam, F. L.; Au-Yeung, T. T.-L.; Zhou, Z.; Chan, T. H.; Chan, A. S. C. Org. Lett.
2007, 9, 4295e4298.
18. For general concept concerning efficient synthesis, see: (a) Trost, B. M. Science
1991, 254, 1471e1477; (b) Trost, B. M. Science 1983, 219, 245e250; (c) Trost, B.
M.; Dong, G. Nature 2008, 456, 485e488.
19. Yuan, F.-Q.; Gao, L.-X.; Han, F.-S. Chem. Commun. 2011, 5289e5291.
20. (a) Kalek, M.; Jezowska, M.; Stawinski, J. Adv. Synth. Catal. 2009, 351,
3207e3216; (b) Han, F.-S.; Higuchi, M.; Kurth, D. G. J. Am. Chem. Soc. 2008, 130,
2073e2081.
4.2. General procedure for the allylation of heteroarenes with
allylic acetates
A solution of allylic acetate (0.4 mmol), heteroarene (0.4 mmol,
1.0 equiv, 5.0 equiv of 2-methylfuran was used due to the volatile
nature), and PdCl2 (1.4 mg, 2 mol %) in DCM (1.5 mL) was stirred in
a sealed tube at 60 ꢀC. After the completion of the reaction as
monitored by TLC, the mixture was concentrated and isolated by
column chromatography on silica gel using a mixture of dichloro-
methane and petroleum as eluent to give the allylated products.
Characterization data and copies of 1H NMR spectra of 5 and ally-
lated products were provided in Supplementary data (SI).
21. (a) Siddiqui, N.; Alam, P.; Ahsan, W. Arch. Pharm. Chem. Life Sci. 2009, 342,
173e181; (b) Crawford, J. J.; Henderson, K. W.; Kerr, W. J. Org. Lett. 2006,
8, 5073e5076; (c) Ueda, M.; Miyaura, N. J. Org. Chem. 2000, 65,
4450e4452.
Acknowledgements
22. (a) Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172e1175; (b) Potavathri, S.;
Pereira, K. C.; Gorelsky, S. I.; Pike, A.; LeBris, A. P.; DeBoef, B. J. Am. Chem. Soc.
2010, 132, 14676e14681.
Financial support from Hundred Talent Program of CAS and
State Key Laboratory of Fine Chemicals (KF1008) is acknowledged.