4404
C. Wang et al. / Tetrahedron Letters 53 (2012) 4402–4404
Ph
Ph
O
Ph
50%NaBH4
Ph
1.0 BF3Et2O
Ph
CH3OH, 0 °C, 1h
CH2Cl2, rt, 20min
OH
2h
5h, 91%
4h
, 71%
Scheme 2.
group (1j) was employed, the I2-mediated reaction using THF and
H2O as solvent gave low yield of the corresponding desilylated
indenone product. Interestingly, the reaction took place smoothly
when dioxane was used instead of THF to give the corresponding
indenone in 58% yields (Table 2, entry 10). Substrate with a steri-
cally demanding substituent such as tert-butyl (1k) was also com-
patible under the reaction conditions, furnishing 2k in 66% yields
(Table 2, entry 11). The phenyl substituted 1l gave moderate yield
of 2l (Table 2, entry 12). It is worthy to note when substrate with
a cyclohexenyl group on the triple bond was employed, no desired
indenone but iodocyclization product 3 was obtained in moderate
yield (Table 2, entry 13). Substitution with bis-methoxy groups
on the parent phenyl ring gave 2n in 50% yield (Table 2, entry 14).
The utility of the thus formed indenone as useful synthetic
intermediate was investigated by simple reduction and Friedel-
Crafts reactions, which afforded tetracyclic compound 5h in good
yield under mild conditions (Scheme 2).
In conclusion, we have successfully developed an iodine medi-
ated efficient method for the synthesis of 2,3-disubstituted inde-
nones in the presence of H2O from 2-alkynylbenzyl alcohols, this
reaction is different from the reported iodocyclization reactions
which gave isochromene or isobenzofuran derivatives. Further
studies to make clear the reaction mechanism and applications of
this novel I2-mediated disubstituted indenone formation proce-
dure to extend the scope of synthetic utility of the reaction are un-
der progress in our group.
Supplementary data
Supplementary data (experimental details and spectroscopic
characterization of all new compounds) associated with this article
References and notes
1. For reviews, see: (a) Mphahlele, M. J. Molecules 2009, 14, 4814–4837; (b)
Mphahlele, M. J. Molecules 2009, 14, 5308–5322.
2. (a) Mancuso, R.; Mehta, S.; Gabriele, B.; Salerno, G.; Jenks, W. S.; Larock, R. C. J.
Org. Chem. 2010, 75, 897–901; (b) Liu, Y.; Zhou, S. Org. Lett. 2005, 7, 4609–4611;
(c) Liu, Y.; Song, F.; Cong, L. J. Org. Chem. 2005, 70, 6999–7002; (d) Chen, Z.;
Huang, G.; Jiang, H.; Huang, H.; Pan, X. J. Org. Chem. 2011, 76, 1134–1139.
3. (a) Flynn, B. L.; Flynn, G. P.; Hamel, E.; Jung, M. K. Bioorg. Med. Chem. Lett. 2001,
11, 2341–2343; (b) Ren, X. F.; Turos, E.; Lake, C. H.; Churchill, M. R. J. Org. Chem.
1995, 60, 6468–6483.
4. (a) Knight, D. W.; Redfern, A. L.; Gilmore, J. J. Chem. Soc., Perkin Trans. 1 2001,
2874–2883; (b) Knight, D. W.; Redfern, A. L.; Gilmore, J. J. Chem. Soc., Perkin
Trans. 1 2002, 622–628.
5. (a) Fischer, D.; Tomeba, H.; Pahadi, N. K.; Patil, N. T.; Yamamoto, Y. Angew. Chem.,
Int. Ed. 2007, 46, 4764–4766; (b) Kobayashi, K.; Hashimoto, K.; Shiokawa, T.;
Morikawa, O.; Konishi, H. Synthesis 2007, 6, 824–828; (c) Verma, A. K.; Aggarwal,
T.; Rustagi, V.; Larock, R. C. Chem. Commun. 2010, 46, 4064–4066; (d) Yue, D.;
Larock, R. C. Org. Lett. 2004, 6, 1037–1040; (e) Yue, D.; Ca, N. D.; Larock, R. C. J.
Org. Chem. 2006, 71, 3381–3388; (f) Yao, T.; Larock, R. C. J. Org. Chem. 2003, 68,
5936–5942; (g) Majumdar, K. C.; Sinha, B.; Ansary, I.; Chakravorty, S. Synlett
2010, 9, 1407–1411; (h) Shibahara, F.; Kitagawa, A.; Yamaguchi, E.; Murai, T.
Org. Lett. 2006, 8, 5621–5624.
6. (a) Xu, X.; Liu, J.; Liang, L.; Li, Y. Adv. Synth. Catal. 2009, 351, 2599–2604; (b) Li,
H.; Yang, J.; Liu, Y.; Li, Y. J. Org. Chem. 2009, 74, 6797–6801; (c) Xu, X.; Xu, X.; Li,
H.; Xie, X.; Li, Y. Org. Lett. 2010, 12, 100–103; (d) Yang, J.; Wang, C.; Xie, X.; Li, H.;
Li, E.; Li, Y. Org. Biomol. Chem. 2011, 9, 1342–1346.
7. For metal-catalyzed cyclization reactions of 2-alkynylbenzyl alcohols, see: (a)
Hashmi, A. S. K.; Schafer, S.; Wolfle, M.; Gil, C. D.; Fischer, P.; Laguna, A.; Blanco,
M. C.; Gimeno, M. C. Angew. Chem., Int. Ed. 2007, 46, 6184–6187; (b) Gabriele, B.;
Salerno, G.; Fazio, A.; Pittelli, R. Tetrahedron 2003, 59, 6251–6259.
8. (a) Ernst-Russell, M. A.; Chai, C. L. L.; Wardlaw, J. H.; Elix, J. A. J. Nat. Prod. 2000,
63, 129–131; (b) Lopes, L. M. X.; Yoshida, M.; Gottlieb, O. R. Phytochemistry 1984,
23, 2021–2024; (c) Anstead, G. M.; Ensign, J. L.; Peterson, C. S.;
Katzenellenbogen, J. A. J. Org. Chem. 1989, 54, 1485–1491.
9. (a) Larock, R. C.; Doty, M. J.; Cacchi, S. J. Org. Chem. 1993, 58, 4579–4583; (b)
Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644–4680. references cited therein;
(c) Miura, T.; Murakami, M. Org. Lett. 2005, 7, 3339–3341; (d) Tsukamoto, H.;
Kondo, Y. Org. Lett. 2007, 9, 4227–4230; (e) Morimoto, T.; Yamsaki, K.; Hirano,
A.; Tsutsumi, K.; Kagawa, N.; Kakiuchi, K.; Harada, Y.; Fukumoto, Y.; Chatani, N.;
Nishioka, T. Org. Lett. 2009, 11, 1777–1780; (f) Basavaiah, D.; Lenin, D. V. Eur. J.
Org. Chem. 2010 , 5650–5658. and references cited therein; (g) Dibe, D.; Toste, F.
D. J. Am. Chem. Soc. 2006, 128, 12062–12063; (h) Harada, Y.; Nakanishi, J.;
Fujihara, H.; Tobisu, M.; Fukumoto, Y.; Chatani, N. J. Am. Chem. Soc. 2007, 129,
5766–5771; (i) Kokubo, K.; Matsumasa, K.; Miura, M.; Nomura, M. J. Org. Chem.
1996, 61, 6941–6946; (j) Das, A.; Liao, H.-H.; Liu, R.-S. J. Org. Chem. 2007, 72,
9214–9218; (k) Pena, D.; Perez, D.; Guitian, E.; Castedo, L. Eur. J. Org. Chem. 2003,
1238–1243; (l) Alonso, D. A.; Najera, C.; Pacheco, M. C. Adv. Synth. Catal. 2002,
344, 172–183.
A typical procedure for the I2-mediated synthesis of 2-butyl-3-
phenyl-1H-inden-1-one (2a)9h
To a solution of (2-(hex-1-ynyl)phenyl)(phenyl)methanol (1a)
(132 mg, 0.5 mmol) in THF (3 mL) was added H2O (100 lL), I2
(381 mg, 1.5 mmol). The resulting solution was stirred at 50 °C
for 13 h. Then it was quenched with saturated Na2S2O3, extracted
with ethyl acetate, washed with saturated NaCl, and dried over
Na2SO4. The solvent was evaporated under reduced pressure and
the residue was purified by chromatography on silica gel to afford
2-butyl-3-phenyl-1H-inden-1-one (2a) (101 mg, 77%) as a yellow
oil. 1H NMR (300 MHz, CDCl3, Me4Si) d 0.84 (t, J = 7.2 Hz, 3H),
1.24–1.53 (m, 4H), 2.34 (t, J = 7.8 Hz, 2H), 6.98 (d, J = 7.2 Hz, 1H),
7.15–7.19 (m, 1H), 7.24–7.29 (m, 1H), 7.43–7.53 (m, 6H); 13C
NMR (75 MHz, CDCl3, Me4Si) d 13.69, 22.68, 22.94, 31.33, 120.38,
122.29, 127.68, 128.04, 128.65, 128.98, 130.89, 132.76, 133.06,
135.39, 145.78, 154.91, 198.24; HR-MS: m/z = 262.1356, Calcd for
C19H18O: 262.1358.
Acknowledgment
We are grateful to the National Natural Science Foundation of
China (No. 20872037) for financial support.