C. T. Burns et al. / Tetrahedron Letters 53 (2012) 4832–4835
4835
9. Miller, S. C. J. Org. Chem. 2010, 75, 4632–4635.
Advanced Technology Research Center of the US Army, the Depart-
ment of Energy (DEFG02-08CH11538), and the Kentucky Research
Challenge Trust Fund for the upgrades of our X-ray facilities.
10. Schweitzer, H.; Hentrich, W.; Burr, K. U.S. Patent 1911,719, May 30, 1933.
11. The synthesis of both the methyl- and allyl-2-amino-5-methyl-
benzenesulfonate esters was attempted but apparent thermal instability in
both of these alkyl esters led to decomposition during work-up and isolation.
12. Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635–646. The poor isolated
Supplementary data
yield of NPSO ester
6 is believed to be due to reaction of 6 with H2O;
Ph2PMe = O and amino ester 2b were observed as side products..
13. Synthesis of NPSO ester 5 was attempted using amino ester 2b and Ph3PBr2 in
the presence of excess NEt3. After work-up, 2b was recovered along with
Ph3P@O as the only phosphorous containing product.
Supplementary data associated with this article can be found, in
14. Braun, T. P.; Gutsch, P. A.; Zimmer, H. Z. Naturforsch. 1999, 54b, 858–962.
15. 1H NMR of the reaction mixture showed unreacted 3b and (o-tolyl)3P and 31P
NMR confirmed the presence of free (o-tolyl)3P (d = À30.3 ppm).
16. Tolman, C. A. Chem. Rev. 1977, 77, 313–348.
References and notes
1. Burns, C. T.; Shang, S.; Thapa, R. Abstracts of Papers, 242nd National Meeting of
the American Chemical Society, Denver, Co; American Chemical Society:
Washington, DC, 2011; INOR 501.
2. (a) Stephan, D. W. Organometallics 2005, 24, 2548–2560; (b) Dehnicke, K.;
Kreiger, M.; Massa, W. Coord. Chem. Rev. 1999, 182, 19–65.
3. (a) Brown, C. C.; Glotzbach, C.; Stephan, D. W. Dalton Trans. 2010, 39, 9626–
9632; Examples of exocyclic phosphinimines: (b) Sauthier, M.; Leca, F.; Souza,
R. F. D.; Bernardo-Gusmao, K.; Quieroz, L. F. T.; Toupet, L.; Reau, R. N. J. Chem.
2002, 26, 630–635; (c) Spencer, L. P.; Altwer, R.; Wei, P.; Gelmini, L.; Gauld, J.;
Stephan, D. W. Organometallics 2003, 22, 3841–3854; (d) Zhang, C.; Sun, W. H.;
Wang, Z. X. Eur. J. Inorg. Chem. 2006, 4895–4902; (e) Wallis, C. J.; Kraft, I. L.;
Patrick, B. O.; Mehrkhodavandi, P. Dalton Trans. 2010, 39, 541–547; Examples of
endocyclic phosphinimines: (f) Boubekeur, L.; Ricard, L.; Mezailles, N.;
Demange, M.; Auffrant, A.; Le Floch, P. Organometallics 2006, 25, 3091–3094;
(g) Conroy, K. D.; Piers, W. E.; Parvez, M. J. Organomet. Chem. 2008, 693, 834–
836; (h) Wheaton, C. A.; Ireland, B. J.; Hayes, P. G. Organometallics 2009, 28,
1282–1285.
17. (a) Fortman, G. C.; Captain, B.; Hoff, C. D. Inorg. Chem. 2009, 48, 1808; (b)
Kennedy, R. D. Chem. Commun. 2010, 46, 4782–4784.
18. Xie, M.; Widlanski, T. S. Tetrahedron Lett. 1996, 37, 4443–4446.
19. (a) Oae, S.; Togo, H. Bull. Chem. Soc. Jpn. 1983, 56, 3802–3812; (b) Switching
solvent to the more polar THF again led to no deprotection and only unreacted
5 was recovered after 12 h under reflux.
20. Simpson, L. S.; Widlanski, T. S. J. Am. Chem. Soc. 2006, 128, 1605–1610.
21. When using 10 or 20 equiv of piperidine, the rate of deprotection increased but
the amount of Ph3PO increased as well. For 10 equiv of piperidine, 83% of 10
was observed after 72 h with 9% Ph3PO. For 20 equiv of piperidine, 88% of 10
was observed with 12% Ph3PO present after 72 h.
22. The pKa of
a
protonated phosphinimine is similar to that of
a
trialkylammonium salt (pKa of HNEt3 = 10.75), see: Ref. 4 and (a) Matrosov,
E. I.; Gilyarov, V. A.; Kovtun, V. Y.; Kabachnik, M. I. Russ. Chem. Bull. 1971, 20,
1076–1081; (b) Smith, M. B.; March, J. March’s Advanced Organic Chemistry, 6th
ed.; Wiley: Hoboken, New Jersey, 2007.
23. After 24 h at 68 °C, 85% conversion to 12 was observed. The protonated
phosphonium group in 12 appears as a singlet at 31 ppm in the 31P NMR while
the N-H is visible in 1H NMR spectrum as a sharp doublet at 10.22 ppm (2JP–
H = 10 Hz). No Ph3PO is observed in any of the reactions of 9 with [Hpy][BF4] or
11 with pyridine.
4. (a) Dehnicke, K.; Weller, F. Coord. Chem. Rev. 1997, 158, 103–169; (b) Llamas-
Saiz, A. L.; Foces-Foces, C.; Elguero, L.; Molina, P.; Alajarin, M.; Vidal, A. Acta
Chim. Hungarica 1993, 130, 467–495.
5. Sanchez, G.; Serrano, J. L.; Lopez, C. M.; Garcia, J.; Perez, J.; Lopez, G. Inorg. Chim.
Acta 2000, 306, 168–173.
24. Stationary Phase: Silica gel, Solvent: 95/5 CH2Cl2/MeOH. See the Supporting
Information for additional information.
6. (a) Drent, E.; van Dijk, R.; van Ginkel, R.; van Oort, B.; Pugh, R. I. Chem. Commun.
2002, 744–745; (b) Nakamura, A.; Ito, S.; Nozaki, K. Chem. Rev. 2009, 109,
5215–5244. and references therein; (c) Perrotin, P.; McCahill, J. S. J.; Wu, G.;
Scott, S. L. Chem. Commun. 2011, 47, 6948–6950. and references therein.
7. (a) Sundararaju, B.; Achard, M.; Demerseman, B.; Toupet, L.; Sharma, G. V. M.;
Bruneau, C. Angew. Chem., Int. Ed. 2010, 49, 2782–2785; (b) Sundararaju, B.;
Achard, M.; Sharma, G. V. M.; Bruneau, C. J. Am. Chem. Soc. 2011, 133, 10340–
10343.
8. (a) Brown, M. K.; May, T. L.; Baxter, C. A.; Hoveyda, A. H. Angew. Chem. Int. Ed.
2007, 46, 1097–1100; (b) Lee, Y.; Akiyama, K.; Gillingham, D. G.; Brown, M. K.;
Hoveyda, A. H. J. Am. Chem. Soc. 2008, 130, 446–447; (c) Lee, Y.; Hoveyda, A. H. J.
Am. Chem. Soc. 2009, 131, 3160–3161; (d) Lee, Y.; Jang, H.; Hoveyda, A. H. J. Am.
Chem. Soc. 2009, 131, 18234–18235.
25. (a) Aguilar, D.; Aznarez, F.; Biesla, R.; Falvello, L. R.; Navarro, R.; Urriolabeitia, E.
P. Organometallics 2007, 26, 6397–6402; (b) Llamas-Saiz, A. L.; Foces-Foces, C.;
Elguero, J.; Molina, P.; Alajarin, M.; Vidal, A. Acta Crystallagr., Sect. C 1992, 48,
1940–1945; (c) Bohn, E.; Dehnicke, K.; Beck, J.; Hiller, W.; Strahle, J.; Maurer,
A.; Fenske, D. Z. Naturforsch., B 1988, 43, 138–144.
26. ORTEP-3 for Windows, L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565.
27. 31P NMR shifts for zwitterions 12 and 15–18; 12 (d = 31.6 ppm), 13
(d = 31.6 ppm), 14 (d = 31.4 ppm), 15 (d = 39.0 ppm), 16 (d = 43.7 ppm), 17
(d = 36.1 ppm), 18 (d = 48.9 ppm). The N–H is visible in the downfield region of
the 1H NMR spectra of 12–18 as a sharp doublet (2JP–H = 7–10 Hz) except for 15
whose 1H NMR spectrum was recorded in CD3OD due to poor solubility of 15 in
CD2Cl2 or CDCl3.