LETTER
Organocatalyzed Michael Addition Reaction by a New Fused Proline
253
(dd, J = 9.2, 12.4 Hz, 1 H), 4.70 (dd, J = 6.3, 12.4 Hz, 1 H),
3772. (d) Tan, B.; Zeng, X.; Lu, Y.; Chua, P. J.; Zhong, G.
Org. Lett. 2009, 11, 1927.
6.70–6.74 (m, 2 H), 7.06–7.10 (m, 2 H). 13C NMR (100
MHz, CD3OD): d = 30.4, 40.0, 47.2, 80.9, 116.5, 129.8,
131.5, 157.9, 208.8. The ee of the product was determined
by HPLC using a Daicel Chiralpak IA column (n-hexane–i-
PrOH = 90:10, flow rate 1 mL/min, l = 230 nm):
(20) (a) Wang, J.; Li, H.; Lou, B.; Zu, L.; Guo, H.; Wang, W.
Chem. Eur. J. 2006, 12, 4321. (b) Arno, M.; Zaragoza, R. J.;
Domingo, L. R. Tetrahedron: Asymmetry 2007, 18, 157.
(c) Okuyama, Y.; Nakano, H.; Watanabe, Y.; Makabe, M.;
Takeshita, M.; Uwai, K.; Kabuto, C.; Kwon, E. Tetrahedron
Lett. 2009, 50, 193.
tR(major) = 29.1 min; tR(minor) = 26.9 min. HRMS: m/z
calcd for C11H13NNaO4: 246.0737; found: 246.0728 [M+ +
Na]. [a]D22 7.3 (c 1.0, MeOH, 33% ee).
(21) Wiesner, M.; Upert, G.; Angelici, G.; Wennemers, H. J. Am.
Compound 8k: Following the general procedure, compound
8k was obtained after 10 d at r.t. as a yellow oil in 74% yield;
mp 131–133 °C. 1H NMR (400 MHz, CDCl3): d = 2.11 (s, 3
H), 2.88 (d, J = 7.1 Hz, 2 H), 3.96 (q, J = 7.1 Hz, 1 H), 4.55
(dd, J = 7.8, 12.2 Hz, 1 H), 4.65 (dd, J = 6.8, 12.2 Hz, 1 H),
5.02 (s, 1 H), 6.91–6.95 (m, 2 H), 7.12–7.15 (m, 2 H), 7.31–
7.44 (m, 5 H). 13C NMR (100 MHz, CDCl3): d = 30.3, 38.3,
46.2, 70.0, 79.6, 115.2, 127.4, 128.0, 128.4, 128.5, 130.9,
136.7, 158.3, 205.5. The ee of the product was determined
by HPLC using a Daicel Chiralpak IA column (n-hexane–i-
PrOH = 97:3, flow rate 1 mL/min, l = 230 nm):
Chem. Soc. 2010, 132, 6.
(22) Xue, F.; Zhang, S.; Duan, W.; Wang, W. Adv. Synth. Catal.
2008, 250, 2194.
(23) Evans, D. A.; Seidel, D. J. Am. Chem. Soc. 2005, 127, 9958.
(24) All calculations were carried out with the Gaussian 09 suite
of programs: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.;
Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani,
G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji,
H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.;
Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara,
M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;
Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.;
Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark,
M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V.
N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell,
A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega,
N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.;
Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.;
Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.;
Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg,
J. J.; Dapprich, S.; Daniels, A. D.; Farkas, ; Foresman, J. B.;
Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision
A.1; Gaussian, Inc.: Wallingford CT, 2009.
(25) Calculations were carried out by fully optimizing transition
structures at the B3LYP/6-31+G(d,p) level and then
performing single-point calculations at M062X/6-
311+G(d,p) level with correction for solvent using Tomasi’s
polarizable continuum model (PCM) for DMSO level. The
use of M062X functional was chosen following recent
studies carried out by Houk and Papai. See: (a) Rokob,
T. A.; Hamza, A.; Papai, I. Org. Lett. 2007, 9, 4279.
(b) Wheeler, S. E.; Moran, A.; Pieniazek, S. Z.; Houk, K. N.
J. Phys. Chem. 2009, 113, 10376.
tR(major) = 44.5 min; tR(minor) = 41.1 min. HRMS: m/z
calcd for C18H19NNaO4: 336.1206; found: 336.1215 [M+ +
Na].
Compound 8l: Following the general procedure, compound
8l was obtained after 2 d at r.t. as a yellow oil in 67% yield.
1H NMR (300 MHz, CDCl3): d = 2.13 (s, 3 H), 2.88 (d,
J = 6.9 Hz, 2 H), 3.97 (q, J = 6.9 Hz, 1 H), 4.56 (dd, J = 8.1,
12.6 Hz, 1 H), 4.67 (dd, J = 6.3, 12.6 Hz, 1 H), 7.07 (dd,
J = 2.1, 8.4 Hz, 1 H), 7.32 (d, J = 2.1 Hz, 1 H), 7.39 (d,
J = 8.4 Hz, 1 H). 13C NMR (75 MHz, CDCl3): d = 30.2, 38.0,
45.7, 78.8, 126.9, 129.4, 130.9, 132.0, 133.0, 139.1, 204.6.
The ee of the product was determined by HPLC using a
Daicel Chiralpak IA column (n-hexane–i-PrOH = 97:3, flow
rate 1 mL/min, l = 230 nm): tR(major) = 29.1 min;
tR(minor) = 26.1 min. HRMS: m/z calcd for
C11H11Cl2NNaO3: 298.0008; found: 298.0007 [M+ + Na].
[a]D22 –1.53 (c 1.0, CHCl3, 44% ee).
(16) For the single reported example of 2 as suitable
organocatalyst, see: Vignola, N.; List, B. J. Am. Chem. Soc.
2004, 126, 450.
(17) Flores-Ortega, A.; Jiménez, A. I.; Cativiela, C.; Nussinov,
R.; Alemán, C.; Casanovas, J. J. Org. Chem. 2008, 73, 3418.
(18) For scarce reported examples of 3 as suitable organocatalyst,
see: (a) Kunz, R. K.; MacMillan, D. W. C. J. Am. Chem. Soc.
2005, 127, 3240. (b) Hartikka, A.; Arvidsson, P. I. J. Org.
Chem. 2007, 72, 5874.
(19) (a) Mitchell, C. E. T.; Cobb, A. J. A.; Ley, S. V. Synlett 2005,
611. (b) Huang, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2006,
128, 7170. (c) Laars, M.; Ausmess, K.; Uudesmaa, M.;
Tamm, T.; Kanger, T.; Lopp, M. J. Org. Chem. 2009, 74,
(26) See ref. 25b. Whereas the mean error is estimated of about
2.0 kcal/mol for M062X functional, for B3LYP deviations
up to more than 10 kcal/mol could be observed. For this
reason, although B3LYP correctly predict the observed
enantioselectivity for 4, it cannot be considered
representative.
Synlett 2011, No. 2, 249–253 © Thieme Stuttgart · New York