ORGANIC
LETTERS
2012
Vol. 14, No. 17
4406–4409
Design and Concise Synthesis of a Novel
Type of Green Fluorescent Protein
Chromophore Analogue
Masahiro Ikejiri,† Moe Tsuchino,† Yoshiko Chihara,† Takao Yamaguchi,‡
Takeshi Imanishi,‡ Satoshi Obika,‡ and Kazuyuki Miyashita*,†
Faculty of Pharmacy, Osaka Ohtani University, Nishikiori-Kita 3-11-1, Tondabayashi,
Osaka 584-8540, Japan, and Graduate School of Pharmaceutical Sciences,
Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871, Japan
Received July 10, 2012
ABSTRACT
A small molecular model compound for the green fluorescent protein chromophore was readily synthesized by a novel condensation reaction of
(thio)imidate with imino-ester via an aziridine intermediate. This compound showed fluorescence in the solid and frozen solution states but not in
the solution state. Its fluorescent property was successfully applied in the detection of dsDNA.
A number of functional fluorescent molecules have been
developed as useful imaging tools thus far, which, for
instance, can help visualize various biological events through
the highly sensitive detection of biologically important
molecules.1 The development of a green fluorescent protein
(GFP) is one of the most remarkable milestones in this
research field.2 Despite the enormous contribution of the
GFP to biological research, only a limited number of small
molecular model compounds have been reported for a
GFP chromophore.3À8 This is probably because the GFP
chromophore does not exhibit fluorescence when it is
outside the barrel structure of the GFP. It is well-known that
the conformation of the GFP chromophore is strictly re-
stricted to a Z-form in the barrel structure (Figure 1), which
enables the GFP to exhibit fluorescence.9 However, without
the barrel structure, fluorescent quenching of the GFP
chromophore is induced by molecular motion such as the
double bond isomerization of the 4-hydroxyphenylmethylene
† Osaka Ohtani University.
‡ Osaka University.
(1) For a recent review, see: Kobayashi, H.; Ogawa, M.; Alford, R.;
Choyke, P. L.; Urano, Y. Chem. Rev. 2010, 110, 2620–2640.
(2) GFP review:Zimmer, M. Chem. Rev. 2002, 102, 759–781.
(3) (a) He, X.; Bell, A. F.; Tonge, P. J. Org. Lett. 2002, 4, 1523–1526.
(5) Notable phenomena have been reported, in which the encapsula-
tion of a modified GFP chromophore induced fluorescence: (a)
Baldridge, A.; Samanta, S. R.; Jayaraj, N.; Ramamurthy, V.; Tolbert,
L. M. J. Am. Chem. Soc. 2010, 132, 1498–1499. (b) Cacciarini, M.;
Nielsen, M. B.; de Castro, E. M.; Marinescu, L.; Bols, M. Tetrahedron
Lett 2012, 53, 973–976.
˚
(b) Petersen, M. A.; Riber, P.; Andersen, L. H.; Nielsen, M. B. Synthesis
2007, 3635–3638. (c) Lincke, K.; Sølling, T.; Andersen, L. H.; Klærke,
˚
B.; Rahbek, D. B.; Rajput, J.; Oehlenschlæger, C. B.; Petersen, M. A.;
(6) Wu, L.; Burgess, K. J. Am. Chem. Soc. 2008, 130, 4089–4096.
(7) Kojima, S.; Ohkawa, H.; Hirano, T.; Maki, S.; Niwa, H.; Ohashi,
M.; Inouye, S.; Tsuji, F. I. Tetrahedron Lett. 1998, 39, 5239–5242.
(8) Recently, Jaffrey and co-workers reported fluorescent RNA
aptamers that bind modified GFP chromophores:Paige, J. S.; Wu,
K. Y.; Jaffrey, S. R. Science 2011, 333, 642–646.
(9) Niwa, H.; Inouye, S.; Hirano, T.; Matsuno, T.; Kojima, S.;
Kubota, M.; Ohashi, M.; Tsuji, F. I. Proc. Natl. Acad. Sci. U.S.A.
1996, 93, 13617–13622.
Nielsen, M. B. Chem. Commun. 2010, 46, 734–736. (d) Kartritzky, A. R.;
Yoshioka-Tarver, M.; El-Gendy, B. M.; Hall, C. Tetrahedron Lett. 2011,
52, 2224–2227.
(4) Tolbert’s group reported a series of GFP chromophore ana-
logues: (a) Tolbert, L. M.; Baldridge, A.; Kowalik, J.; Solntsev, K. M.
Acc. Chem. Res. 2012, 45, 171–181and references therein. (b) Baranov,
M. A.; Lukyanov, K. A.; Borissova, A. O.; Shamir, J.; Kosenkov, D.;
Slipchenko, L. V.; Tolbert, L. M.; Yampolsky, I. V.; Solntsev, K. M.
J. Am. Chem. Soc. 2012, 134, 6025–6032.
r
10.1021/ol301901e
Published on Web 08/16/2012
2012 American Chemical Society