428
H.T. Balaydın et al. / European Journal of Medicinal Chemistry 54 (2012) 423e428
[15] T.H. Maren, The kinetics of HCO3-synthesis related to fluid secretion, pH
controls and CO2 elimination, Annu. Rev. Physiol. 50 (1988) 695e717.
[16] C.T. Supuran, Carbonic anhydrases: novel therapeutic applications for inhib-
itors and activators, Nat. Rev. Drug Discov. 7 (2008) 168e181.
[17] M. Hilvo, L. Baranauskiene, A.M. Salzano, A. Scaloni, D. Matulis, A. Innocenti,
A. Scozzafava, S.M. Monti, A. Di Fiore, G. De Simone, M. Lindfors, J. Jänis,
J. Valjakka, S. Pastoreková, J. Pastorek, M.S. Kulomaa, H.R. Nordlund,
C.T. Supuran, S. Parkkila, Biochemical characterization of CA IX, one of the
most active carbonic anhydrase isozymes, J. Biol. Chem. 283 (2008)
27799e27809.
[18] J. Kivela, S. Parkkila, A. Waheed, A.K. Parkkila, W.S. Sly, H. Rajaniemi, Secretory
carbonic anhydrase isoenzyme (CA VI) in human serum, Clin. Chem. 43 (1997)
2318e2322.
[19] C.T. Supuran, A. Scozzafava, Applications of carbonic anhydrase inhibitors and
activators in therapy, Expert Opin. Ther. Pat. 12 (2002) 217e242.
[20] D. Ekinci, M. Senturk, O.I. Kufrevioglu, Salicylic acid derivatives: synthesis,
features and usage as therapeutic tools, Expert Opin. Ther. Pat. 21 (2011)
1831e1841.
A reference measurement was obtained by preparing the same
cuvette without enzyme solution. The inhibitory effects of
compounds 2e24 were examined. All compounds were tested in
triplicate at each concentration used. Different inhibitor concen-
trations were used. Control cuvette activity in the absence of
inhibitor was taken as 100%. For each inhibitor an Activity
%-[Inhibitor] graph was drawn. The curve-fitting algorithm
allowed us to obtain the IC50 values, working at the lowest
concentration of substrate of 0.15 mM, from which KI values were
calculated by using the ChengePrusoff equation [36]. The catalytic
activity (in the absence of inhibitors) of these enzymes was calcu-
lated from LineweavereBurk plots, as reported earlier, and represent
the mean from at least three different determinations. The enzymes
used here were purified from human blood as described earlier.
[21] S. Pastorekova, S. Parkkila, J. Pastorek, C.T. Supuran, Carbonic anhydrases:
current state of the art, therapeutic applications and future prospects,
J. Enzym. Inhib. Med. Chem. 19 (2004) 199e229.
Acknowledgments
[22] A. Innocenti, D. Vullo, A. Scozzafava, C.T. Supuran, Carbonic anhydrase
inhibitors. Interactions of phenols with the 12 catalytically active mammalian
isoforms (CA I-XIV), Bioorg. Med. Chem. Lett. 18 (2008) 1583e1587.
[23] M. Harig, B. Neumann, H.G. Stammler, D. Kuck, 2,3,6,7,10,11-
Hexamethoxytribenzo triquinacene: synthesis, solid-state structure and
functionalization of a rigid analogue of cyclotriveratrylene, Eur. J. Org. Chem.
11 (2004) 2381e2397.
[24] E. Sahin, H.T. Balaydin, S. Goksu, A. Menzek, 2,3-Dibromo-1-[4-(2,3-dibromo-
4,5-di-meth-oxy-benz-yl)-2,5-dimeth-oxy-benz-yl]-4,5-dimeth-oxy-
benzene, Acta Cryst. E66 (2010) o3029.
We are grateful to Prof. Dr. Claudiu T. Supuran, University of
Florence, for various valuable studies on CAIs. This study was
financed by TÜBITAK (The Scientific and Technological Research
Council of Turkey) (Project no: TBAG-107T348) for (HTB and SG)
and Ataturk University.
_
Appendix A. Supplementary data
[25] Y. Cetinkaya, A. Menzek, E. Sahin, H.T. Balaydın, Selective O-demethylation
during bromination of (3,4-dimethoxyphenyl)(2,3,4-trimethoxyphenyl)
methanone, Tetrahedron 67 (2011) 3483e3489.
Supplementary data related to this article can be found online at
[26] D. Ekinci, S.B. Ceyhun, M. Senturk, D. Erdem, O.I. Kufrevioglu, C.T. Supuran,
Characterization and anions inhibition studies of an
a-carbonic anhydrase
from the teleost fish Dicentrarchus labrax, Bioorg. Med. Chem. 19 (2011)
744e748.
References
[27] H. Lineweaver, D. Burk, The determination of enzyme dissocation constants,
J. Am. Chem. Soc. 56 (1934) 658e666.
[28] J.A. Verpoorte, S. Mehta, J.T. Edsall, Esterase activities of human carbonic
anhydrases B and C, J. Biol. Chem. 242 (1967) 4221e4229.
[29] H.T. Balaydin, S. Durdagi, D. Ekinci, M. Senturk, S. Goksu, A. Menzek, Inhibition
of human carbonic anhydrase isozymes I, II and VI with a series of bisphenol,
methoxy and bromophenol compounds, J. Enzym. Inhib. Med. Chem. (2011).
doi:10.3109/14756366.2011.596836.
[30] S. Durdagi, M. Senturk, D. Ekinci, H.T. Balaydin, S. Goksu, O.I. Kufrevioglu,
A. Innocenti, A. Scozzafava, C.T. Supuran, Kinetic and docking studies of
phenol-based inhibitors of carbonic anhydrase isoforms I, II, IX and XII
evidence a new binding mode within the enzyme active site, Bioorg. Med.
Chem. 19 (2011) 1381e1389.
[1] G.W. Gribble, The diversity of naturally occurring organobromine compounds,
Chem. Soc. Rev. 28 (1999) 335e346.
[2] H.S. Lee, T.H. Lee, J.H. Lee, C.S. Chae, S.C. Chung, D.S. Shin, J. Shin, K.B. Oho,
Inhibition of the pathogenicity of Magnaporthe grisea by bromophenols, iso-
citrate lyase inhibitors, from the red alga Odonthalia corymbifera, J. Agric. Food
Chem. 55 (2007) 6923e6928.
[3] K.B. Oh, J.L. Lee, S.C. Chung, J. Shin, H.J. Shin, H.K. Kim, H.S. Lee, Antimicrobial
activities of the bromophenols from the red alga Odonthalia corymbifera and
some synthetic derivatives, Bioorg. Med. Chem. Lett. 18 (2008) 104e108.
[4] N. Xu, X. Fan, X. Yan, X. Li, R. Niu, C.K. Tseng, Antibacterial bromophenols from
the marine red alga Rhodomela confervoides, Phytochemistry 62 (2003)
1221e1224.
[31] S.K. Nair, P.A. Ludwig, D.W. Christianson, Two-site binding of phenol in the
active site of human carbonic anhydrase II: structural implications for
substrate association, J. Am. Chem. Soc. 116 (1994) 3659e3660.
[32] S. Parkkila, K. Kaunisto, L. Rajaniemi, T. Kumpulainen, K. Jokinen, H. Rajaniemi,
Immunohistochemical localization of carbonic anhydrase isoenzymes VI, II
and I in human parotid and submandibular glands, J. Histochem. Cytochem.
38 (1990) 941e947.
[33] C. Alp, D. Ekinci, M.S. Gultekin, M. Senturk, E. Sahin, O.I. Kufrevioglu, A novel
and one-pot synthesis of new 1-tosyl pyrrol-2-one derivatives and analysis of
carbonic anhydrase inhibitory potencies, Bioorg. Med. Chem. 18 (2010)
4468e4477.
[34] S.B. Ceyhun, M. Senturk, E. Yerlikaya, O. Erdogan, O.I. Kufrevioglu, D. Ekinci,
Purification and characterization of carbonic anhydrase from the teleost fish
Dicentrarchus labrax (European seabass) liver and toxicological effects of
metals on enzyme activity, Environ. Toxicol. Pharmacol. 32 (2011) 69e74.
[35] D. Ekinci, H. Cavdar, S. Durdagi, O. Talaz, M. Senturk, C.T. Supuran, Structure-
activity relationships for the interaction of 5,10-dihydroindeno[1,2-b]indole
derivatives with human and bovine carbonic anhydrase isoforms I, II, III, IV
and VI, Eur. J. Med. Chem. 49 (2012) 68e73.
[36] Y. Cheng, W.H. Prusoff, Relationship between the inhibition constant (Ki) and
the concentration of inhibitor which causes 50 per cent inhibition (I50) of an
enzymatic reaction, Biochem. Pharmacol. 22 (1973) 3099e3108.
[37] D. Neri, C.T. Supuran, Interfering with pH regulation in tumours as a thera-
peutic strategy, Nat. Rev. Drug Discov. 10 (2011) 767e777.
[5] W. Wang, Y. Okada, H. Shi, Y. Wang, T. Okuyama, Structures and aldose
reductase inhibitory effects of bromophenols from the red alga symphyocladia
latiuscula, J. Nat. Prod. 68 (2005) 620e622.
[6] H.T. Balaydın, M. Senturk, A. Menzek, Synthesis and carbonic anhydrase
inhibitory properties of novel cyclohexanonyl bromophenol derivatives, Bio-
org. Med. Chem. Lett. 22 (2012) 1352e1357.
[7] H.T. Balaydin, H. Soyut, D. Ekinci, S. Goksu, S. Beydemir, A. Menzek, E. Sahin,
Synthesis and carbonic anhydrase inhibitory properties of novel bromophe-
nols including natural products, J. Enzym. Inhib. Med. Chem. 27 (2012) 43e50.
[8] H.T. Balaydin, I. Gulcin, A. Menzek, S. Goksu, E. Sahin, Synthesis and antioxi-
dant properties of diphenylmethane derivative bromophenols including
a natural product, J. Enzym. Inhib. Med. Chem. 25 (2010) 685e695.
[9] X.J. Duan, X.M. Li, B.G. Wang, Highly brominated mono- and bis-phenols from
the marine red alga symphyocladia latiuscula with radical-scavenging activity,
J. Nat. Prod. 70 (2007) 1210e1213.
[10] M. Senturk, I. Gulcin, S. Beydemir, O.I. Kufrevioglu, C.T. Supuran, In vitro
inhibition of human carbonic anhydrase
I and II isozymes with natural
phenolic compounds, Chem. Biol. Drug Des. 77 (2011) 494e499.
[11] M. Senturk, D. Ekinci, S. Goksu, C.T. Supuran, Effects of dopaminergic
compounds on carbonic anhydrase isozymes I, II, and VI, J. Enzym. Inhib. Med.
Chem. 27 (2012) 365e369.
[12] Y. Akbaba, H.T. Balaydin, S. Goksu, E. Sahin, A. Menzek, Total synthesis of the
biologically active, naturally occurring 3,4-dibromo-5-[2-bromo-3,4-
dihydroxy-6-(methoxymethyl) benzyl]benzene-1,2-diol and regioselective
o-demethylation of aryl methyl ethers, Helv. Chim. Acta 93 (2010)
1127e1135.
[38] A.A. Barrese, C. Genis, S.Z. Fisher, J.N. Orwenyo, M.T. Kumara, S.K. Dutta,
E. Phillips, J.J. Kiddle, C. Tu, D.N. Silverman, L. Govindasamy, M. Agbandje-
McKenna, R. McKenna, B. Tripp, Inhibition of carbonic anhydrase II by thio-
[13] H.T. Balaydin, Y. Akbaba, A. Menzek, E. Sahin, S. Goksu, First and short
syntheses of biologically active, naturally occurring brominated mono- and
dibenzyl phenols, Arkivoc XIV (2009) 75e87.
xolone:
a mechanistic and structural study, Biochemistry 47 (2008)
3174e3184.
[39] A.-M. Chevolot-Magueur, A. Cave, P. Potier, J. Teste, A. Chiaroni, C. Riche,
Bromo compounds from Rytiphlea tinctoria (Rhodophyceae), Phytochemistry
15 (1976) 767e771.
[14] D.F. Wiemer, D.D. Idler, W. Fenical, Vidalols A and B, new anti-inflammatory
bromophenols from the Caribbean marine red alga Vidalia obtusaloba,
Experientia 47 (1991) 851e853.