Journal of the American Chemical Society
Page 4 of 6
Grammel, M.; Hang, H. C. Chemical reporters for biological
discovery. Nat. Chem. Biol. 2013, 9, 475.
the Scientific Center for Optical and Electron Microscopy
(ScopeM) of ETH Zurich for support.
1
2
3
4
5
6
7
8
(9) For reviews, see: (a) Devaraj, N. K. The future of
Bioorthogonal Chemistry. ACS Cent. Sci. 2018, 4, 952. (b) Row, R.
D.; Prescher, J. A. Constructing New Bioorthogonal Reagents and
Reactions. Acc. Chem. Res. 2018, 51, 1073. For examples, see: (c)
Schoch, J.; Staudt, M.; Samanta, A.; Wiessler, M.; Jäschke, A. Site-
specific One-Pot Dual Labeling of DNA by Orthogonal Cycloaddition
Chemistry. Bioconjugate Chem. 2012, 23, 1382. (d) Rashidian, M.;
Kumarapperuma, S. C.; Gabrielse, K.; Fegan, A.; Wagner, C. R.;
Distefano, M. D. Simultaneous Dual Protein Labeling Using a
Triorthogonal Reagent. J. Am. Chem. Soc. 2013, 135, 16388. (e)
Wainman, Y. A.; Neves, A. A.; Stairs, S.; Stöckmann, H.; Ireland-
Zecchini, H.; Brindle, K. M.; Lepper, F. J. Dual-sugar imaging using
isonitrile and azido-based click chemistries. Org. Biomol. Chem.,
2013, 11, 7297. (f) Yang, Y.; Lin, S.; Lin, W.; Chen, P. R. Chen
Ligand-Assisted Dual-Site Click Labeling of EGFR on Living Cells.
ChemBioChem 2014, 15, 1738. (g) Sachdeva, A.; Wang, K.; Elliott,
T.; Chin, J. W. Concerted, Rapid, Quantitative and Site-Specific Dual
Labeling of Proteins. J. Am. Chem. Soc. 2014, 136, 7785.
REFERENCES
(1) Chemoselective and Bioorthogonal Ligation Reactions:
Concepts and Applications (Eds.: W. R. Algar, P. E. Dawson, I. L.
Medintz), Wiley-VCH, Weinheim, 2017.
(2) For reviews, see: (a) Sletten, E. M.; Bertozzi, C. R.
Bioorthogonal Chemistry: Fishing for Selectivity in
a Sea of
Functionality. Angew. Chem.Int. Ed. 2009, 48, 6974; (b) Best, M. D.
Click Chemistry and Bioorthogonal Reactions: Unprecedented
Selectivity in the Labeling of Biological Molecules. Biochemistry
2009, 48, 6571; (c) Li, J.; Chen, P. R. Development and application of
bond cleavage reactions in bioorthogonal chemistry. Nat. Chem. Biol.
2016, 12, 129; (d) Patterson, D. M.; Nazarova, L. A.; Prescher, J. A.
Finding the Right (Bioorthogonal) Chemistry. ACS Chem. Biol. 2014,
9, 592. (e) Schäfer, R. J. B.; Aronoff, M. R.; Wennemers, H. Recent
Advances in Bioorthogonal Reactions. Chimia, 2019, 73, 308.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(3) (a) Kayser, H.; Zeitler, R.; Kannicht, C.; Grunow, D.; Nuck, R.;
Reutter, W. Biosynthesis of a nonphysiological sialic acid in different
rat organs, using N-propanoyl-D-hexosamines as precursors. J. Biol.
Chem. 1992, 267, 16934. (b) Mahal, L. K; Yarema, K. J.; Bertozzi, C.
R. Engineering Chemical Reactivity on Cell Surfaces Through
Oligosaccaride Biosynthesis. Science, 1997, 276, 1125.
(10) (a) Ramozzi, R.; Chéron, N.; Braida, B.; Hiberty, P. C.;
Fleurat-Lessard, P. A valence bond view of isocyanides' electronic
structure. New. J. Chem. 2012, 36, 1137. (b) Nef, J. U. Ueber das
zweiwerthige Kohlenstoffatom. Justus Liebigs Ann. Chem., 1892,
270, 267. (c) Lindemann, H.; Wiegrebe, L. Über die Konstitution der
Verbindungen mit "zweiwertigem" Kohlenstoff. Chem. Ber. 1930, 63,
1650. For a brief historical review of the study on isocyanides, see: I.
Ugi Isonitrile Chemistry, Acad. Press, New York, 1971, 20, 1.
(4) For examples, see: (a) Saxon, E.; Bertozzi, C. R. Cell Surface
Engineering by a Modified Staudinger Reaction. Science 2000, 287,
2007. (b) Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. A Strain-
Promoted [3+2] Azide–Alkyne Cycloaddition for Covalent
Modification of Biomolecules in Living Systems. J. Am. Chem. Soc.
2004, 126, 15046. (c) Andersen, K. A.; Aronoff, M. R.; McGrath, N.
A.; Raines, R. T. Diazo Groups Endure Metabolism and Enable
Chemoselectivity in Cellulo. J. Am. Chem. Soc. 2015, 137, 2412. (d)
Niederwieser, A.; Späte, A.-K.; Nguyen, L. D.; Jüngst, C.; Reutter,
W.; Wittmann, V. Two-Color Glycan Labeling of Live-Cells by a
Combination of Diels–Alder and Click Chemistry. Angew. Chem., Int.
Ed., 2013, 52, 4265.
(11) (a) Scheuer, P. J. Isocyanides and cyanides as natural
products. Acc. Chem. Res. 1992, 25, 433; (b) Ugi, I.; Fetzer, U.;
Eholzer, U.; Knupfer, H.; Offermann, K. Isonitrile Syntheses. Angew.
Chem., Int. Ed., 1965, 4, 472. (c) For a study on the stability of
isonitriles under physiological conditions: L. Goldstein, L.; Niv, A.
Isonitrile derivatives of polyacrylamide as supports for the
immobilization of biomolecules. Appl. Biochem. Biotechnol., 1993,
42, 19.
(12) (a) Stöckmann, H.; Neves, A. A.; Stairs, S.; Brindle, K. M.;
Leeper, F. J. Exploring isonitrile-based click chemistry for ligation
with biomolecules. Org. Biomol. Chem. 2011, 9, 7303. (b) Stairs, S.;
Neves, A. A.; Stöckmann, H.; Wainman, Y. A.; Ireland-Zecchini, H.;
Brindle, K. M, Leeper, F. J. Metabolic glycan imaging by isonitrile–
tetrazine click chemistry. ChemBioChem 2013, 14, 1063. (c) Tu, J.;
Svatunek, D.; Parvez, S.; Liu, A. C.; Levandowski, B. J.; Eckvahl, H.
J.; Peterson, R. T., Houk, K. N.; Franzini, R. M. Stable, Reactive, and
Orthogonal Tetrazines: Dispersion Forces Promote the Cycloaddition
with Isonitriles. Angew. Chem. Int. Ed. 2019, 21, 1075. (d) Tu, J.; Xu,
M.; Parvez, S.; Peterson, R. T.; Franzini, R. M. Bioorthogonal
Removal of 3-Isocyanopropyl Groups Enables the Controlled release
of Fluorophores and Drugs in Vivo. J. Am. Chem. Soc. 2018, 140,
8410.
(5) For examples, see: (a) Neef, A. B.; Schultz, C. Selective
fluorescence Labeling of lipids in living cells. Angew. Chem. Int. Ed.
2009, 48, 1498. (b) Kho, Y.; Kim, S. C.; Jiang, C.; Barma, D.; Kwon,
S. W.; Cheng, J.; Jaunbergs, J.; Weinbaum, C.; Tamanoi, F.; Falck, J.;
Zhao, Y. A tagging-via-substrate technology for detection and
proteomics of farnesylated proteins. Proc. Natl. Acad. Sci. U. S. A.
2004, 101, 12479.
(6) For examples, see: Seo, T. S.; Li, Z. M.; Ruparel, H.; Ju, J. Y.
Click chemistry to construct fluorescent oligonucleotides for DNA
sequencing. J. Org. Chem. 2003, 68, 609. (b) Salic, A.; Mitchison, T.
J. A chemical method for fast and sensitive detection of DNA
synthesis in vivo. Proc. Natl. Acad. Sci. USA 2008, 105, 2415. (c)
Gierlich, J.; Burle, G. A.; Grämlich, P. M. E.; Hammond, D. M.;
Carell, T. Click chemistry as a reliable method for the high-density
postsynthetic functionalization of alkyne-modified DNA. Org. Lett.
2006, 8, 3639. (d) Werther, P.; Möhler, J. S.; Wombacher, R. A
Bifunctional Fluorogenic Rhodamine Probe for Proximity Induced
Bioorthogonal Chemistry. Chem. Eur. J. 2017, 23, 18216.
(13) (a) Mercalli, V.; Maddarotti, A.; Varese, M.; Giustiniano, M.,
Meneghetti, F.; Novellino, E.; Tron, G. C. Multicomponent Reaction
of Z-Chlorooximes, Isocyanides, and Hydroxylamines as
Hypernucleophilic Traps. A One Pot Route to Aminodioximes and
Their Transformation into 5- Amino-1,2,4-oxadiazoles by Mitsunobu-
Beckmann Rearrangement. J. Org. Chem. 2015, 80, 9652. (b) Soeta,
T.; Takashita, S.; Sakata, Y.; Ukaji, Y. Phosphinic acid-promoted
addition reaction of isocyanides to (Z)-hydroximoyl chlorides:
efficient synthesis of -(hydroxyimino)amides. Org. Biomol. Chem.,
2016, 14, 694. For a review, see: Giustiniano, M.; Novellino, E.;
Tron, G. C. Nitrile N-Oxides and Nitrile Imines as New Fuels for the
Discovery of Novel Isocyanide-Based Multicomponent reactions.
Synthesis 2016, 48, 2721.
(7) For examples, see: (a) Griffin, B. A.; Adams, S. R.; Tsien, R.
Y. Specific covalent labeling of recombinant protein molecules inside
live cells. Science 1998, 281, 269. (b) Blackman, M. L.; Royzen, M.;
Fox, J. M. Tetrazine Ligation: Fast Bioconjugation Based on Inverse-
Electron-Demand Diels-Alder Reactivity. J. Am. Chem. Soc. 2008,
130, 13518. (c) Karver, M. R.; Weissleder, R.; Hilderbrand, S. A.
Bioorthogonal Reaction Pairs Enable Simultaneous, Selective, Multi-
Target Imaging. Angew. Chem. Int. Ed. 2011, 51, 920. (d) Wang, Q.;
Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless, K. B.; Finn, M. G.
Bioconjugation by Copper (I)-Catalyzed Azide–Alkyne [3+2]
Cycloaddition. J. Am. Chem. Soc. 2003, 125, 3192.
(14) For the use of nitrile-oxides in click chemistry see: (a)
Heaney, F. Nitrile Oxide/Alkyne Cycloadditions – A Credible
Platform for Synthesis of Bioinspired Molecules by Metal-Free
Molecular Clicking. Eur. J. Org. Chem. 2012, 3043; (b) Sanders, B.
C.; Friscourt, F.; Ledin, P. A.; Mbua, N. E.; Arumugam, S.; Guo, J;
Boltke, T. J.; Popik, V. V.; Boons, G.-J. Metal-Free Sequential [3+2]
(8) (a) Kalia, J.; Raines, R. T. Advances in Bioconjugation. Curr.
Org. Chem. 2010, 14, 138. (b) Prescher, J. A.; Bertozzi, C. R.
Chemistry in living systems. Nat. Chem. Biol. 2005, 1, 13-21; (c)
ACS Paragon Plus Environment