10.1002/anie.201706781
Angewandte Chemie International Edition
COMMUNICATION
[5]
a) X. Qian, A. Auffrant, A. Felouat, C. Gosmini, Angew. Chem. Int. Ed.
2011, 50, 10402-10405; Angew. Chem. 2011, 123, 10586-10589; b) X.
Yu, T. Yang, S. Wang, H. Xu, H. Gong, Org. Lett. 2011, 13, 2138-2141;
c) L. L. Anka-Lufford, M. R. Prinsell, D. J. Weix, J. Org. Chem. 2012, 77,
9989-10000; d) H. Xu, C. Zhao, Q. Qian, W. Deng, H. Gong, Chem. Sci.
2013, 4, 4022-4029.
J. Am. Chem. Soc. 1985, 107, 4252-4259; b) Y. N. Belokon, V. I.
Bakhmutov, N. I. Chernoglazova, K. A. Kochetkov, S. V. Vitt, N. S.
Garbalinskaya, V. M. Belikov, J. Chem. Soc., Perkin Trans. 1 1988, 305-
312; c) S. Collet, P. Bauchat, R. Danion-Bougot, D. Danion, Tetrahedron:
Asymmetry 1998, 9, 2121-2131; d) D. Houck, J. Luis Aceña, V. A.
Soloshonok, Helv. Chim. Acta 2012, 95, 2672-2679.
[6]
[7]
a) G. A. Molander, K. M. Traister, B. T. O’Neill, J. Org. Chem. 2014, 79,
5771-5780; b) G. A. Molander, K. M. Traister, B. T. O’Neill, J. Org. Chem.
2015, 80, 2907-2911; c) Y. Fegheh-Hassanpour, T. Arif, H. O. Sintim, H.
H. Al Mamari, D. M. Hodgson, Org. Lett. 2017.
[22] a) M. Eckhardt, G. C. Fu, J. Am. Chem. Soc. 2003, 125, 13642-13643;
b) G. Altenhoff, S. Würtz, F. Glorius, Tetrahedron Lett. 2006, 47, 2925-
2928; c) O. Vechorkin, D. Barmaz, V. Proust, X. Hu, J. Am. Chem. Soc.
2009, 131, 12078-12079; d) J. Yi, X. Lu, Y.-Y. Sun, B. Xiao, L. Liu, Angew.
Chem. Int. Ed. 2013, 52, 12409-12413; Angew. Chem. 2013, 125,
12635-12639; e) P. M. Pérez García, P. Ren, R. Scopelliti, X. Hu, ACS
Catal. 2015, 5, 1164-1171.
a) H. Hofmeister, K. Annen, H. Laurent, R. Wiechert, Angew. Chem. Int.
Ed. 1984, 23, 727-729; Angew. Chem. 1984, 96, 720-722; b) L.
Brandsma, H. D. Verkruijsse, Synthesis 1990, 984-985.
[8]
[9]
a) J. P. Brand, J. Waser, Chem. Soc. Rev. 2012, 41, 4165-4179; b) W.
Wu, H. Jiang, Acc. Chem. Res. 2014, 47, 2483-2504.
[23] a) J. Cornella, J. T. Edwards, T. Qin, S. Kawamura, J. Wang, C.-M. Pan,
R. Gianatassio, M. Schmidt, M. D. Eastgate, P. S. Baran, J. Am. Chem.
Soc. 2016, 138, 2174-2177; b) T. Qin, J. Cornella, C. Li, L. R. Malins, J.
T. Edwards, S. Kawamura, B. D. Maxwell, M. D. Eastgate, P. S. Baran,
Science 2016, 353, 801-805; c) J. Wang, T. Qin, T.-G. Chen, L. Wimmer,
J. T. Edwards, J. Cornella, B. Vokits, S. A. Shaw, P. S. Baran, Angew.
Chem. Int. Ed. 2016, 55, 9676-9679; Angew. Chem. 2016, 128, 9828-
9831; d) J. T. Edwards, R. R. Merchant, K. S. McClymont, K. W. Knouse,
T. Qin, L. R. Malins, B. Vokits, S. A. Shaw, D.-H. Bao, F.-L. Wei, T. Zhou,
M. D. Eastgate, P. S. Baran, Nature 2017, doi:10.1038/nature22307; e)
T. Qin, L. R. Malins, J. T. Edwards, R. R. Merchant, A. J. E. Novak, J. Z.
Zhong, R. B. Mills, M. Yan, C. Yuan, M. D. Eastgate, P. S. Baran, Angew.
Chem. Int. Ed. 2017, 56, 260-265; Angew. Chem. 2017, 129, 3367–3371;
f) F. Sandfort, M. J. O'Neill, J. Cornella, L. Wimmer, P. S. Baran, Angew.
Chem. Int. Ed. 2017, 56, 3319-3323; Angew. Chem. 2017, 129, 3367-
3371.
a) T. Thaler, L.-N. Guo, P. Mayer, P. Knochel, Angew. Chem. Int. Ed.
2011, 50, 2174-2177; Angew. Chem. 2011, 123, 2222-2225; b) M.
Corpet, X.-Z. Bai, C. Gosmini, Adv. Synth. Catal. 2014, 356, 2937-2942.
[10] a) N. B. Desai, N. McKelvie, F. Ramirez, J. Am. Chem. Soc. 1962, 84,
1745-1747; b) E. J. Corey, P. L. Fuchs, Tetrahedron Lett. 1972, 13, 3769-
3772; c) D. Habrant, V. Rauhala, A. M. P. Koskinen, Chem. Soc. Rev.
2010, 39, 2007-2017.
[11] a) D. Seyferth, R. S. Marmor, P. Hilbert, J. Org. Chem. 1971, 36, 1379-
1386; b) S. Ohira, Synth. Commun. 1989, 19, 561-564; c) S. Müller, B.
Liepold, G. J. Roth, H. J. Bestmann, Synlett 1996, 521-522.
[12] a) K. Okada, K. Okamoto, M. Oda, J. Am. Chem. Soc. 1988, 110, 8736-
8738; b) K. Okada, K. Okamoto, M. Oda, J. Chem. Soc., Chem. Commun.
1989, 1636-1637; c) K. Okada, K. Okamoto, N. Morita, K. Okubo, M. Oda,
J. Am. Chem. Soc. 1991, 113, 9401-9402; d) M. J. Schnermann, L. E.
Overman, Angew. Chem. Int. Ed. 2012, 51, 9576-9580; Angew. Chem.
2012, 124, 9714-9718; e) G. Pratsch, G. L. Lackner, L. E. Overman, J.
Org. Chem. 2015, 80, 6025-6036.
[24] S. Biswas, D. J. Weix, J. Am. Chem. Soc. 2013, 135, 16192-16197.
[25] a) C. Feng, D. W. Cunningham, Q. T. Easter, S. A. Blum, J. Am. Chem.
Soc. 2016, 138, 11156-11159; b) A. Krasovskiy, V. Malakhov, A.
Gavryushin, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 6040-6044;
Angew. Chem. 2006, 118, 6186–6190; c) F. M. Piller, P. Appukkuttan, A.
Gavryushin, M. Helm, P. Knochel, Angew. Chem. Int. Ed. 2008, 47,
6802-6806; Angew. Chem. 2008, 120, 6907–6911; d) S. Sase, M. Jaric,
A. Metzger, V. Malakhov, P. Knochel, J. Org. Chem. 2008, 73, 7380-
7382; e) C. Sämann, M. A. Schade, S. Yamada, P. Knochel, Angew.
Chem. Int. Ed. 2013, 52, 9495-9499; Angew. Chem. 2013, 125, 9673–
9677; f) H. Fillon, C. Gosmini, J. Périchon, J. Am. Chem. Soc. 2003, 125,
3867-3870.
[13] a) K. M. M. Huihui, J. A. Caputo, Z. Melchor, A. M. Olivares, A. M.
Spiewak, K. A. Johnson, T. A. DiBenedetto, S. Kim, L. K. G. Ackerman,
D. J. Weix, J. Am. Chem. Soc. 2016, 138, 5016-5019; b) F. Toriyama, J.
Cornella, L. Wimmer, T.-G. Chen, D. D. Dixon, G. Creech, P. S. Baran,
J. Am. Chem. Soc. 2016, 138, 11132-11135.
[14] a) F. Le Vaillant, T. Courant, J. Waser, Angew. Chem. Int. Ed. 2015, 54,
11200-11204; Angew. Chem. 2015, 127, 11352-11356; b) J. Yang, J.
Zhang, L. Qi, C. Hu, Y. Chen, Chem. Commun. 2015, 51, 5275-5278; c)
Q.-Q. Zhou, W. Guo, W. Ding, X. Wu, X. Chen, L.-Q. Lu, W.-J. Xiao,
Angew. Chem. Int. Ed. 2015, 54, 11196-11199; Angew. Chem. 2015, 127,
11348-11351; d) C. Yang, J.-D. Yang, Y.-H. Li, X. Li, J.-P. Cheng, J. Org.
Chem. 2016, 81, 12357-12363.
[26] a) K. Osakada, T. Yamamoto, Coord. Chem. Rev. 2000, 198, 379-399;
b) T. Yamamoto, S. Wakabayashi, K. Osakada, J. Organomet. Chem.
1992, 428, 223-237.
[15] H. Zhang, P. Zhang, M. Jiang, H. Yang, H. Fu, Org. Lett. 2017, 19, 1016-
1019.
[27] a) R. J. Kinney, W. D. Jones, R. G. Bergman, J. Am. Chem. Soc. 1978,
100, 7902-7915; b) C. E. Ash, P. W. Hurd, M. Y. Darensbourg, M.
Newcomb, J. Am. Chem. Soc. 1987, 109, 3313-3317.
[16] J. M. Smith, T. Qin, R. R. Merchant, J. T. Edwards, L. R. Malins, Z. Liu,
G. Che, Z. Shen, S. A. Shaw, M. D. Eastgate, P. S. Baran, Angew. Chem.
Int. Ed. 2017, DOI: 10.1002/anie.201705107; Angew. Chem. 2017,
10.1002/ange.201705107.
[28] Note that cyclopropylnickel intermediates are also known to rearrange via
a presumed non-radical process. a) P. A. Pinke, R. D. Stauffer, R. G.
Miller, J. Am. Chem. Soc. 1974, 96, 4229-4234; b) A. Masarwa, I. Marek,
Chem.--Eur. J. 2010, 16, 9712-9721; c) I. Nakamura, Y. Yamamoto, Adv.
Synth. Catal. 2002, 344, 111-129.
[17] Currently, TCNHPI is two orders of magnitude more expensive than NHP.
Sigma-Aldrich prices: $42/mole for NHP vs. $2560/mole for TCNHPI.
[18] X. Liu, Z. Wang, X. Cheng, C. Li, J. Am. Chem. Soc. 2012, 134, 14330-
14333.
[29] For further details on these experiments and preliminary characterization
of the intermediates, see the Supporting Information. Although the
organonickel intermediates are paramagnetic, EPR data suggests a
integer-spin complex, such as tetrahedral or octahedral nickel(II), and not
a ½-integer spin complex.
[19] a) C. Zhao, X. Jia, X. Wang, H. Gong, J. Am. Chem. Soc. 2014, 136,
17645-17651; b) N. Suzuki, J. L. Hofstra, K. E. Poremba, S. E. Reisman,
Org. Lett. 2017, 19, 2150-2153.
[20] G. Sun, M. Wei, Z. Luo, Y. Liu, Z. Chen, Z. Wang, Org. Process Res.
Dev. 2016, 20, 2074-2079.
[30] Similar to this situation, both alkylnickel(II) and arylnickel(II)
intermediates are known to react with the complementary electrophile to
form alkylated arenes. See ref. 24 and references cited therein.
[21] a) Y. N. Belokon, A. G. Bulychev, S. V. Vitt, Y. T. Struchkov, A. S.
Batsanov, T. V. Timofeeva, V. A. Tsyryapkin, M. G. Ryzhov, L. A. Lysova,
This article is protected by copyright. All rights reserved.