Recently, CꢀH activation has become a hot topic9
because of its economic advantages and it provides a direct
route for CꢀC bond formations.10 A wide range of transi-
tion-metal catalysts, such as PdII, CuII, RhIII, and CoII
complexes have been applied in the direct CꢀC cross-
coupling via C(sp2)ꢀH functionalization.11 These CꢀH
bond activation reactions often require a suitable catalyst,
functionalized partner, and oxidant.12 Importantly, the
functionalized partner containing a directing group played
an important role in the reactions because the CꢀH bond
adjacent to a heteroatom can be selectively activated.11
Several directing groups, including pyridines, oximes,
amides, amines, alcohols, carboxylic acids, esters, ketones,
aldehdyes, and triazenes, were effective to realize the ortho-
selective CꢀH functionalizations.13 It is noteworthy that
aryl ketones could be directly synthesized through transi-
tion-metal-catalyzed CꢀH activation (Scheme 1), and
carbonyl sources, such as aldehydes, alcohols, and
R-ketone acids, were needed.14 However, R-diketone as a
coupling partner15 and a potential carbonyl source via
CꢀC cleavage to form arylketones was rarely reported. In
continuing our efforts on the organic reactions through
CꢀH activation,16 herein, we wish to report a novel
approach to aryl ketones from arylpyridines and R-dike-
tones via Pd-catalyzed CꢀH bond activation of 2-arylpyr-
idine and selective C(sp2)ꢀC(sp2) bond cleavage of
R-diketones in the presence of tert-butyl hydroperoxide.
Scheme 1. Transition-Metal-Catalyzed Carbo-acylations
In our initial attempts to realize the carbo-acylation
reaction of 2-phenylpyridine (1a) with R-diphenyl ketone
(2a), the catalyst screening was first investigated. As shown
in Table 1, all Pd/TBHP systems could catalyze the model
reaction in THF. To our delight, Pd(OAc)2 exhibited the
highest activity among the Pd sources in Table 1, and the
desired product 3a was isolated in 82% yield (Table 1,
entry 1). Other Pd catalysts, such as Pd(CH3CN)2Cl2,
Pd(PPh3)4, Pd(PPh3)2Cl2, and PdCl2 were inferior and
generated 3a in 34ꢀ62% yields (Table 1, entries 2ꢀ5).
Next, a variety of oxidants were examined on the model
reactiontofurther optimizethe reaction conditions. TBHP
was found to be the best one among the oxidants tested in
Table 1. Other organic oxidizers, such as di-tert-butyl per-
oxide (DTBP), R,R-dimethylbenzyl hydroperoxide (DBHP),
dicumyl peroxide (DCP), tert-butyl peroxybenzoate (TBPB),
and peroxyacetic acid (PAA), gave the inferior yields of 3a
in 21ꢀ50% (Table 1, entries 6ꢀ10). However, the inorganic
oxidants K2S2O8 and Cu(OAc)2 showed very poor perfor-
mance (Table 1, entries 11 and 12). In addition, the effect of
solvent on the reaction was also investigated, and the results
indicated that THF was the best medium among the screened
solvents in Table S1 (see the Supporting Information).
Under the optimized reaction conditions, the scope of
the carbo-acylation reactions between the substituted ar-
ylpyridines with various R-diketones was investigated. As
can be seen from Scheme 2, the reaction of arylpyridines
with R-diketones gave the corresponding products in good
yields. A variety of arylpyridines bearing substituents on
the benzene rings were examined. The results indicated
that the functional groups, including electron-donating
and -withdrawing ones, were tolerated.
(10) For selected reviews, see: (a) Jia, C.; Kitamura, T.; Fujiwara, Y.
Acc. Chem. Res. 2001, 34, 633. (d) Ritleng, V.; Sirlin, C.; Pfeffer, M.
Chem. Rev. 2002, 102, 1731. (c) Alberico, D.; Scott, M. E.; Lautens, M.
Chem. Rev. 2007, 107, 174. (d) Beccalli, E. M.; Broggini, G.; Martinelli,
M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318. (e) Lewis, J. C.;
Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013. (f)
Diaz-Requejo, M. M.; Perez, P. J. Chem. Rev. 2008, 108, 3379. (g) Giri,
R.; Shi, B.; Engle, K.; Maugel, N.; Yu, J. Q. Chem. Soc. Rev. 2009, 38,
3242. (h) Mkhalid, I.; Barnard, J.; Marder, T.; Murphy, J.; Hartwig, J.
Chem. Rev. 2010, 110, 890. (i) Lyons, T. W.; Sanford, M. S. Chem. Rev.
2010, 110, 1147.
(11) For recent examples, see: (a) Zhao, L.; Basl, O.; Li, C.-J. Proc.
Natl. Acad. Sci. U.S.A. 2009, 106, 4106. (b) Gao, K.; Lee, P. S.; Fujita,
T.; Yoshikai, N. J. Am. Chem. Soc. 2010, 132, 12249. (c) Wang, X.;
Truesdale, L.; Yu, J. Q. J. Am. Chem. Soc. 2010, 132, 3648. (d) Tang,
B. X.; Song, R. J.; Wu, C. Y.; Liu, Y.; Zhou, M. B.; Wei, W. T.; Deng,
G. B.; Yin, D. L.; Li, J. H. J. Am. Chem. Soc. 2010, 132, 8900. (e) Kim,
J. Y.; Park, S. H.; Ryu, J.; Cho, S. H.; Kim, S. H.; Chang, S. J. Am.
Chem. Soc. 2012, 134, 9110. (f) Xie, P.; Xie, Y.; Qian, B.; Zhou, H.; Xia,
C.; Huang, H. J. Am. Chem. Soc. 2012, 134, 9902.
(12) For recent examples, see: (a) Garca-Rubia, A.; Arrays, R. G.;
Carretero, J. C. Angew. Chem., Int. Ed. 2009, 48, 6511. (b) Engle, K. M.;
Wang, D. H.; Yu, J. Q. J. Am. Chem. Soc. 2010, 132, 14137. (c) Engle,
K. M.; Wang, D. H.; Yu., J. Q. Angew. Chem., Int. Ed. 2010, 49, 6169. (d)
Feng, C.; Loh, T. P. Chem. Commun. 2011, 47, 10458. (e) Wang, C.; Ge,
H. B. Chem.;Eur. J. 2011, 17, 14371. (f) Gandeepan, P.; Cheng, C. H.
J. Am. Chem. Soc. 2012, 134, 5738.
(13) For selected examples, see: (a) Wang, D. H.; Engle, K. M.; Shi,
B. F.; Yu, J. Q. Science 2010, 327, 315. (b) Lu, Y.; Wang, D. H.; Engle,
K. M.; Yu, J. Q. J. Am. Chem. Soc. 2010, 132, 5916. (c) Wasa, M.; Engle,
K. M.; Yu, J. Q. J. Am. Chem. Soc. 2010, 132, 3680. (d) Patureau, F. W.;
Besset, T.; Glorius, F. Angew. Chem., Int. Ed. 2011, 50, 1064. (e) Dai,
H. X.; Stepan, A. F.; Plummer, M. S.; Zhang, Y. H.; Yu, J. Q. J. Am.
Chem. Soc. 2011, 133, 7222. (f) Garca-Rubia, A.; Urones, B.; Arrays,
R. G.; Carretero, J. C. Angew. Chem., Int. Ed. 2011, 50, 10927. (g)
Huang, C. H.; Chattopadhyay, B.; Gevorgyan, V. J. Am. Chem. Soc.
2011, 133, 12406. (h) Mewald, M.; Schiffner, J. A.; Oestreich, M. Angew.
Chem., Int. Ed. 2012, 51, 1763. (i) Wang, C. M.; Chen, H.; Wang, Z. F.;
Chen, J.; Huang, Y. Angew. Chem., Int. Ed. 2012, 51, 7242.
(14) (a) Jia, X. F.; Zhang, S. H.; Wang, W. H.; Luo, F.; Cheng, J. Org.
Lett. 2009, 11, 3120. (b) Basl, O.; Bidange, J.; Shuai, Q.; Li, C.-J. Adv.
Synth. Catal. 2010, 352, 1145. (c) Li, M. Z.; Ge, H. B. Org. Lett. 2010, 12,
3464. (d) Chan, C. W.; Zhou, Z. Y.; Chan, A. S. C.; Yu, W. Y. Org. Lett.
2010, 12, 3926. (e) Xiao, F. H.; Shuai, Q.; Zhao, F.; Basle, O.; Deng,
G. J.; Li, C.-J. Org. Lett. 2011, 13, 1614.
(15) (a) Takano, S.; Hatakeyama, S.; Ogasawara, K. J. Am. Chem.
Soc. 1979, 101, 6414. (b) Takano, S.; Hatakeyama, S; Ogasawara, K.
J. Am. Chem. Soc. 1976, 98, 3022.
(16) (a) Li, C.; Wang, L.; Li, P.; Zhou., W. Chem.;Eur. J. 2011, 17,
10208. (b) He, T.; Li, H.; Li, P.; Wang, L. Chem. Commun. 2011, 47,
8946. (c) Li, C.; Li, P.; Yang, J.; Wang, L. Chem. Commun. 2012, 48,
4214. (d) He, T.; Yu, L.; Zhang, L.; Wang, L.; Wang., M. Org. Lett.
2011, 13, 5016.
2-Phenylpyridines with the electron-rich groups on the
phenyl rings, such as MeO, Me groups, reacted smoothly
with R-diphenyl ketone and gave the corresponding carbo-
acylation products 3bꢀf in 67ꢀ83% yields. Meanwhile,
2-phenylpyridines with the electron-poor groups on the
phenyl rings, such as Cl and F groups, also reacted with
R-diphenyl ketone and generated 3h and 3i in 74% and 68%
yields respectively. The reaction of 2-((1,10-biphenyl)-4-yl)-
pyridine with 2a provided the corresponding product 3g in
70% yield. On the other hand, R-diaryl ketones bearing
B
Org. Lett., Vol. XX, No. XX, XXXX