Journal of the American Chemical Society
Page 4 of 5
132, 5586. (c) Takashima, Y.; Martinez, V.; Furukawa, S.; Kondo, M.;
Group
OH
OCOMe COOMe NH2 phenyl COOH
Shimomura, S.; Uehara, H.; Nakahama, M.; Sugimoto, K.; Kitagawa, S.
Nat. Commun. 2011, 2, 168. (d) Kreno, L. E.; Leong, K.; Farha, O. K.;
Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Chem. Rev. 2012, 112, 1105.
(5) (a) An, J.; Geib, S. J.; Rosi, N. L. J. Am. Chem. Soc. 2009, 131,
8376. (b) Rocca, J. D.; Liu, D.; Lin, W. Acc. Chem. Res. 2011, 44, 957. (c)
Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.;
Férey, G.; Morris, R. E.; Serre, C. Chem. Rev. 2012, 112, 1232.
(6) (a) Devic, T.; Horcajada, P.; Serre, C.; Salles, F.; Maurin, G.; Mou-
lin, B.; Heurtaux, D.; Clet, G.; Vimont, A.; Grenèche, J.-M.; Le Ouay, B.;
Moreau, F.; Magnier, E.; Filinchuk, Y.; Marrot, J.; Lavalley, J.-C.; Daturi,
M.; Férey G. J. Am. Chem. Soc. 2010, 132, 1127. (b) Deng, H.; Doonan,
C. J.; Furukawa, H.; Ferreira, R. B.; Towne, J.; Knobler, C. B.; Wang, B.;
Yaghi, O. M. Science 2010, 327, 846. (c) Biswas, S.; Ahnfeldt, T.; Stock,
N. Inorg. Chem. 2011, 50, 9518.
(7) (a) Wang, Z.; Cohen, S. M. J. Am. Chem. Soc. 2007, 129, 12368.
(b) Cohen, S. M. Chem. Rev. 2012, 112, 970.
(8) (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int.
Ed. 2001, 40, 2004.
(9) Goto, Y.; Sato, H.; Shinkai, S.; Sada, K. J. Am. Chem. Soc. 2008,
130, 14354.
(10) (a) Gadzikwa, T.; Lu, G.; Stern, C. L.; Wilson, S. R.; Hupp, J. T.;
Nguyen, S. T. Chem. Commun. 2008, 5493. (b) Gadzikwa, T.; Farha, O.
K.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T.; Nguyen, S. T. J. Am.
Chem. Soc. 2009, 131, 13613. (c) Savonnet, M.; Bazer-Bachi, D.; Bats,
N.; Perez-Pellitero, J.; Jeanneau, E.; Lecocq, V.; Pinel, C.; Farrusseng, D.
J. Am. Chem. Soc. 2010, 132, 4518. (d) Savonnet, M.; Kockrick, E.; Ca-
marata, A.; Bazer-Bachi, D.; Bats, N.; Lecocq, V.; Pinela, C.; Farrusseng,
D. New J. Chem. 2011, 35, 1892. (e) Savonnet, M.; Camarata, A.; Canivet,
J.; Bazer-Bachi, D.; Bats, N.; Lecocq, V.; Pinela, C.; Farrusseng, D. Dal-
ton Trans. 2012, 41, 3945.
(11) (a) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti,
C.; Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850. (b)
Kandiah, M.; Nilsen, M. H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset,
M.; Larabi, C.; Quadrelli, E. A.; Bonino, F.; Lillerud, K. P. Chem. Mater.
2010, 22, 6632. (c) Schaate A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.;
Wiebcke, M.; Behrens, P. Chem. Eur. J. 2011, 17, 6643. (d) Schaate, A.;
Roy, P.; Preuße, T.; Lohmeier, S. J.; Godt, A.; Behrens, P. Chem. Eur. J.
2011, 17, 9320. (e) Morris, W.; Volosskiy, B.; Demir, S.; Gándara, F.;
McGrier, P. L.; Furukawa, H.; Cascio, D.; Stoddart, J. F.; Yaghi, O. M.
Inorg. Chem. 2012, 51, 6443.
1
2
3
4
5
6
7
8
25% N3
50% N3
75% N3
1409
845
848
427
-
-
-
-
-
b
907
-
405
-
595
-
721
-
560
-
c
100% N3
342
200
404
220
293
aDecided by 0.005 < P/P0 < 0.15. bi. e. PCN-58. ci. e. PCN-59.
In conclusion, reactions of ZrCl4 and single or mixed linear lig-
ands bearing methyl or azide groups lead to highly stable isoretic-
ular Zr-MOFs with tunable loadings of azide group inside the
pores. For the first time, the system offers an ideal platform for
facile pore surface engineering by introducing various functional
groups with controlled loadings via click reaction. Remarkably,
the resultant click products have been demonstrated to possess
well-retained framework and accessible functionalized pores. This
work has enabled a general approach for introducing diverse func-
tional groups, especially large and/or reactive groups, into MOF
pores that otherwise could not be directly synthesized by conven-
tional solvothermal reactions. The tailored pore surface with the
control of both type and density of functional groups in MOFs
will extend their functionalities further toward broader applica-
tions.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information
Full details for sample preparation and characterization results,
and crystallographic data (CIF). This material is available free of
AUTHOR INFORMATION
Corresponding Author
(12) As a result of small crystal size of PCN-59, X-ray diffraction data
collection only leads to a data set with the resolution of 1.8 Å.
(13) (a) Fukushima, T.; Horike, S.; Inubushi, Y.; Nakagawa, K.;
Kubota, Y.; Takata, M.; Kitagawa, S. Angew. Chem., Int. Ed. 2010, 49,
4820. (b) Wang, C.; Xie, Z.; deKrafft, K. E.; Lin, W. J. Am. Chem. Soc.
2011, 133, 13445. (c) Nagai, A.; Guo, Z.; Feng, X.; Jin, S.; Chen, X.;
Ding, X.; Jiang, D. Nat. Commun. 2011, 2:536 (1-8). (d) Nakazawa, J.;
Smith, B. J.; Stack, T. D. P. J. Am. Chem. Soc. 2012, 134, 2750. (e) Kim,
M.; Cahill, J. F.; Su, Y.; Prather, K. A.; Cohen, S. M. Chem. Sci. 2012, 3,
126.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
This work was supported by the U.S. Department of Energy
(DOE DE-SC0001015 and DE-AR0000073), the National Science
Foundation (NSF CBET-0930079), and the Welch Foundation
(A-1725). We are thankful to Dr. Mario Wriedt for magnetic
measurements and Prof. Daqiang Yuan for evaluating theoretical
surface area.
(14) Savonnet, M.; Canivet, J.; Gambarelli, S.; Dubois, L.; Bazer-
Bachi, D.; Lecocq, V.; Batsd, N.; Farrusseng, D. CrystEngComm 2012,
14, 4105.
(15) (a) Demessence, A.; D’Alessandro, D. M.; Foo, M. L.; Long, J. R.
J. Am. Chem. Soc. 2009, 131, 8784. (b) Zheng, B.; Bai, J.; Duan, J.;
Wojtas, L.; Zaworotko, M. J. J. Am. Chem. Soc. 2009, 133, 748. (c) An, J.;
Geib, S. J.; Rosi, N. L. J. Am. Chem. Soc. 2010, 132, 38. (d) Lin, Q.; Wu,
T.; Zheng, S.-T.; Bu, X.; Feng, P. J. Am. Chem. Soc. 2012, 134, 784. (e)
McDonald, T. M.; D’Alessandro, D. M.; Krishnac, R.; Long, J. R. Chem.
Sci. 2011, 2, 2022. (f) Li, J.-R.; Ma, Y.; McCarthy, M. C.; Sculley, J.; Yu,
J.; Jeong, H.-K.; Balbuena, P. B.; Zhou, H.-C. Coord. Chem. Rev. 2011,
255, 1791.
REFERENCES
(1) (a) Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.;
Eddaoudi, M.; Kim, J. Nature 2003, 423, 705. (b) Férey, G.; Mellot-
Draznieks, C.; Serre, C.; Millange, F. Acc. Chem. Res. 2005, 38, 217. (c)
Horike, S.; Shimomura, S.; Kitagawa, S. Nat. Chem. 2009, 1, 695. (d)
Long, J. R.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1213. (e) Zhou, H.-
C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673.
(2) (a) Ma, S.; Zhou, H.-C. Chem. Commun. 2010, 46, 44. (b) Sumida,
K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z.
R.; Bae, T.-H.; Long, J. R. Chem. Rev. 2012, 112, 724. (c) Suh, M. P.;
Park, H. J.; Prasad, T. K.; Lim, D.-W. Chem. Rev. 2012, 112, 782. (d) Li,
J.-R.; Sculley, J.; Zhou, H.-C. Chem. Rev. 2012, 112, 869.
(3) (a) Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.;
Kim, K. Nature 2000, 404, 982. (b) Ma, L.; Abney, C.; Lin, W. Chem.
Soc. Rev. 2009, 38, 1248. (c) Farrusseng, D.; Aguado, S.; Pinel, C. Angew.
Chem. Int. Ed. 2009, 48, 7502. (d) Corma, A.; García, H.; Llabrés i
Xamena, F. X. Chem. Rev. 2010, 110, 4606. (e) Jiang, H.-L.; Xu, Q.
Chem. Commun. 2011, 47, 3351.
(4) (a) Chen, B.; Xiang, S.; Qian, G. Acc. Chem. Res. 2010, 43, 1115.
(b) Jiang, H.-L.; Tatsu, Y.; Lu, Z.-H.; Xu, Q. J. Am. Chem. Soc. 2010,
ACS Paragon Plus Environment