TABLE 1. Optimization of Reaction Conditions
Nickel-Catalyzed Borylation of Aryl Cyclopropyl
Ketones with Bis(pinacolato)diboron to
Synthesize 4-Oxoalkylboronates
Yuto Sumida, Hideki Yorimitsu,* and Koichiro Oshima*
Department of Material Chemistry, Graduate School of
Engineering, Kyoto UniVersity, Kyoto-daigaku Katsura,
Nishikyo-ku, Kyoto 615-8510, Japan
yori@orgrxn.mbox.media.kyoto-u.ac.jp;
entry
catalyst (mol %)
ligand (mol %)
base
yield (%)a
1
2
3
4
5
6
7
8
9
Ni(cod)2 (10)
Ni(cod)2 (10)
Ni(cod)2 (10)
Ni(cod)2 (10)
Pd(OAc)2 (10)
Pd(OAc)2 (10)
Ni(cod)2 (10)
Ni(cod)2 (10)
Ni(cod)2 (5)
PCy3 (20)
NaOH
NaOH
NaOH
NaOH
NaOH
NaOH
NaOH
MeOK
MeOK
47
18
30
PtBu3 (20)
ReceiVed January 13, 2009
IPr ·HCl (12)
IMes ·HCl (12)
PCy3 (20)
IMes ·HCl (12)
IMes ·HCl (12)
IMes ·HCl (12)
IMes ·HCl (6)
49
33b
27b
77c
88c
92c d
,
a NMR yields. b Toluene/MeOH (30/1) and 1.5 equiv of diboron were
used. c Toluene/MeOH (15/1) and 1.5 equiv of diboron were used. d At
50 °C and isolated yield.
Aryl cyclopropyl ketones undergo nickel-catalyzed borylative
ring opening with bis(pinacolato)diboron to yield 4-oxoalkylbo-
ronates.
According to our previous reports,9 we first attempted the
borylative ring-opening reaction by using the previous standard
conditions. However, the attempt failed to attain high yield.
Specifically, treatment of cyclopropyl phenyl ketone (1a) with
bis(pinacolato)diboron (2) in the presence of a nickel/tricyclo-
hexylphosphine catalyst, sodium hydroxide, and H2O in toluene/
MeOH afforded the corresponding 4-oxoalkylboronate 3a in
47% yield (Table 1, entry 1). Tri-tert-butylphosphine was
inferior to tricyclohexylphosphine (entry 2). When we applied
N-heterocyclic carbene ligands to this reaction, the results were
improved. Among the carbene ligands, IMes ·HCl11 showed the
highest activity (entry 4). Interestingly, palladium catalysis also
effected the ring-opening reaction, albeit in lower yields (entries
5 and 6).
Organoboron compounds are extremely important reagents
in organic synthesis.1 Transition metal-catalyzed borylation of
unsaturated C-C bonds is one of the most powerful methods
to synthesize organoboron reagents.2 Although many examples
of borylation of unsaturated C-C bonds catalyzed by Pt,3 Pd,4
Rh,5 Cu,6 and Au7 are known, there are few examples of bo-
rylation catalyzed by nickel complexes.8
Recently, we reported nickel-catalyzed ꢀ-borylation of R,ꢀ-
unsaturated esters and amides and the borylative ring-opening
reaction of vinylcyclopropanes.9 In the course of these studies,
we found another borylative reaction. Here we report nickel-
catalyzed borylative ring-opening reactions of aryl cyclopropyl
ketones with bis(pinacolato)diboron yielding synthetically useful
4-oxoalkylboronates.10
A higher concentration and an increased amount of diboron
enhanced the reaction (entry 7, 77% yield). To optimize this
transformation, we next investigated the effects of the bases.
After extensive investigations, we found that metal alkoxides
were effective. Thus, a high yield was observed with potassium
(1) (a) Pelter, A.; Smith, K.; Brown, H. C. Borane Reagents; Academic Press;
London, UK, 1988. (b) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457–
2483. (c) Davison, M.; Hughes, A. K.; Marder, T. B.; Wade, K. Contemporary
Boron Chemistry; RSC: Cambridge, UK, 2000. (d) Hall, D. G. Boronic Acids;
Wiley-VCH: Weinheim, Germany, 2005.
(2) Pioneering work: Ishiyama, T.; Matsuda, N.; Miyaura, N.; Suzuki, A.
J. Am. Chem. Soc. 1993, 115, 11018–11019.
(3) (a) Iverson, C. N.; Smith, M. R., III. Organometallics 1997, 16, 2757–
2759. (b) Lawson, Y. G.; Lesley, M. J. G.; Marder, T. B.; Norman, N. C.; Rice,
C. R. Chem. Commun. 1997, 2051–2052. (c) Marder, T. B.; Norman, N. C.;
Rice, C. R. Tetrahedron Lett. 1998, 39, 155–158. (d) Ali, H. A.; Goldberg, I.;
Srebnik, M. Organometallics 2001, 20, 3962–3965. (e) Bell, N. J.; Cox, A. J.;
Cameron, N. R.; Evans, J. S. O.; Marder, T. B.; Duin, M. A.; Elsevier, C. J.;
Baucherel, X.; Tulloch, A. A. D.; Tooze, R. P. Chem. Commun. 2004, 1854–
1855.
(5) (a) Dai, C.; Robins, E. G.; Scott, A. J.; Clegg, W.; Yufit, D. S.; Howard,
J. A. K.; Marder, T. B. Chem. Commun. 1998, 1983–1984. (b) Nguyen, P.;
Coapes, R. B.; Woodward, A. D.; Taylor, N. J.; Burke, J. M.; Howard, J. A. K.;
Marder, T. B. J. Organomet. Chem. 2002, 652, 77–85. (c) Kabalka, G. W.; Das,
B. C.; Das, S. Tetrahedron Lett. 2002, 43, 2323–2325. (d) Morgan, J. B.; Miller,
S. P.; Morken, J. P. J. Am. Chem. Soc. 2003, 125, 8702–8703.
(6) (a) Ito, H.; Yamanaka, H.; Tateiwa, J.; Hosomi, A. Tetrahedron Lett.
2000, 41, 6821–6825. (b) Takahashi, K.; Ishiyama, T.; Miyaura, N. J. Organomet.
Chem. 2001, 625, 47–53. (c) Mun, S.; Lee, J.-E.; Yun, J. Org. Lett. 2006, 8,
4887–4889. (d) Ito, H.; Kawakami, C.; Sawamura, M. J. Am. Chem. Soc. 2005,
127, 16034–16035.
(7) Baker, R. T.; Nguyen, P.; Marder, T. B.; Wescott, S. A. Angew. Chem.,
Int. Ed. 1995, 34, 1336–1338.
(4) (a) Pelz, N. F.; Woodward, A. R.; Burks, H. E.; Sieber, J. D.; Morken,
J. P. J. Am. Chem. Soc. 2004, 126, 16328–16329. (b) Sebelius, S.; Olsson, V. J.;
Szabo´, K. J. J. Am. Chem. Soc. 2005, 127, 10478–10479. (c) Burks, H. E.; Liu,
S.; Morken, J. P. J. Am. Chem. Soc. 2007, 129, 8766–8773.
(8) Nickel-catalyzed reactions of diborons are rare: (a) Beletskaya, I.; Moberg,
C. Chem. ReV. 1999, 99, 3435-3462. (b) Yu, C.-M.; Youn, J.; Yoon, S.-K.;
Hong, Y.-T. Org. Lett. 2005, 7, 4507–4510. (c) Cho, H. Y.; Morken, J. P. J. Am.
Chem. Soc. 2008, 130, 16140–16141.
3196 J. Org. Chem. 2009, 74, 3196–3198
10.1021/jo900071m CCC: $40.75 2009 American Chemical Society
Published on Web 03/11/2009