E
A. Kondoh et al.
Letter
Synlett
H. J. Am. Chem. Soc. 2013, 135, 5356. (g) Trost, B. M.; Masters, J.
T.; Burns, A. C. Angew. Chem. Int. Ed. 2013, 52, 2260. (h) Zhong,
F.; Dou, X.; Han, X.; Yao, W.; Zhu, Q.; Meng, Y.; Lu, Y. Angew.
Chem. Int. Ed. 2013, 52, 943. (i) Wang, C.; Yang, X.; Enders, D.
Chem. Eur. J. 2012, 18, 4832.
(8.7 mL) was added i-Pr2NEt (75 μL, 0.43 mmol). The resulting
mixture was stirred at room temperature for 10 min. The reac-
tion was quenched with sat. aq NH4Cl, and the product was
extracted with EtOAc. The combined organic layer was washed
with brine, dried over Na2SO4, and evaporated. The residue was
purified by column chromatography (hexane–EtOAc, 2:1) to
provide 2a (1.9 g, 4.1 mmol, 94%) as a colorless oil.
(3) Bruce, J. M.; Sutcliffe, F. K. J. Chem. Soc. 1957, 4789.
(4) Fleming, I.; Loreto, M. A.; Wallace, I. H. M.; Michael, J. P. J. Chem.
Soc., Perkin Trans. 1 1986, 349.
Compound 2a: 1H NMR (600 MHz, CDCl3): δ = 1.08 (t, J = 7.2 Hz,
3 H), 3.63–3.95 (m, 2 H), 7.24–7.27 (m, 5 H), 7.28–7.31 (m, 1 H),
7.36–7.40 (m, 2 H), 7.52 (dd, J = 8.4, 1.2 Hz, 1 H), 7.54 (ddd,
J = 7.2, 7.2, 1.2 Hz, 1 H), 7.59–7.62 (m, 1 H), 7.66 (ddd, J = 7.2,
7.2, 1.2 Hz, 1 H), 7.94 (dd, J = 7.8, 0.60 Hz, 1 H). 13C NMR (150
MHz, CDCl3): δ = 13.7, 62.0, 88.1, 93.6, 122.9, 123.2, 128.0,
128.16 (2 C), 128.23, 128.3, 130.0, 130.6, 131.2, 131.4, 132.2,
132.5, 134.7, 141.4, 141.7, 163.0, 188.5. 31P NMR (243 MHz,
CDCl3): δ = –10.8. IR (ATR): 3061, 2984, 1748, 1731, 1691, 1597,
1496, 1442, 1197, 1020 cm–1. ESI-HRMS: m/z calcd for C24H18O3
[M + Na]+: 377.1148; found: 377.1148.
(5) (a) Wolfe, J. F.; Sleevi, M. C.; Goehring, R. R. J. Am. Chem. Soc.
1980, 102, 3646. (b) Goehring, R. R.; Sachdeva, Y. P.; Pisipati, J.
S.; Cleevi, M. C.; Wolfe, J. F. J. Am. Chem. Soc. 1985, 107, 435.
(6) (a) Shaughnessy, K. H.; Hamann, B. C.; Hartwig, J. F. J. Org. Chem.
1998, 63, 6546. (b) Lee, S.; Hartwig, J. F. J. Org. Chem. 2001, 66,
3402. (c) Ackermann, L.; Vicente, R.; Hofmann, N. Org. Lett.
2009, 11. 4274.
(7) For selected examples, see: (a) Trost, B. M.; Xie, J.; Sieber, J. D.
J. Am. Chem. Soc. 2011, 133, 20611. (b) Hamashima, Y.; Suzuki,
T.; Takano, H.; Shimura, Y.; Sodeoka, M. J. Am. Chem. Soc. 2005,
127, 10164. (c) Huang, A.; Kodanko, J. J.; Overman, L. E. J. Am.
Chem. Soc. 2004, 126, 14043; see also ref. 2.
(8) (a) Durbin, M. J.; Willis, M. C. Org. Lett. 2008, 10, 1413.
(b) Altman, R. A.; Hyde, A. M.; Huang, X.; Buchwald, S. L. J. Am.
Chem. Soc. 2008, 130, 9613. (c) Li, P.; Buchwald, S. L. Angew.
Chem. Int. Ed. 2011, 50, 6396. (d) Xiao, Z.-K.; Yin, H.-Y.; Shao, L.-
X. Org. Lett. 2013, 15, 1254. (e) Koch, E.; Takise, R.; Studer, A.;
Yamaguchi, J.; Itami, K. Chem. Commun. 2015, 51, 855.
(9) (a) Peng, C.; Zhang, W.; Yan, G.; Wang, J. Org. Lett. 2009, 11,
1667. (b) Zhai, C.; Xing, D.; Jing, C.; Zhou, J.; Wang, C.; Wang, D.;
Hu, W. Org. Lett. 2014, 16, 2934.
(14) The reduction of α-halocarbonyl compounds and α-halosulfox-
ides, which is related to the formation of byproduct 5, was dis-
cussed in the literature, see: (a) Lei, A.; Zhang, X. Tetrahedron
Lett. 2002, 43, 2525. (b) Rodoríguez, N.; Cuenca, A.; de Arellano,
C. R.; Medio-Simón, M.; Asensio, G. Org. Lett. 2003, 5, 1705.
(c) Rodoríguez, N.; Cuenca, A.; de Arellano, C. R.; Medio-Simón,
M.; Peine, D.; Asensio, G. J. Org. Chem. 2004, 69, 8070. (d) Zhao,
Y.; Wang, H.; Hou, X.; Hu, Y.; Lei, A.; Zhang, H.; Zhu, L. J. Am.
Chem. Soc. 2006, 128, 15048. (e) Peng, Z.-Y.; Wang, J.-P.; Cheng,
J.; Xie, X.-M.; Zhang, Z. Tetrahedron 2010, 66, 8238.
(15) Yamamoto, Y.; Takizawa, M.; Yu, X.-Q.; Miyaura, N. Angew.
Chem. Int. Ed. 2008, 47, 928.
(10) (a) Hayashi, M.; Nakamura, S. Angew. Chem. Int. Ed. 2011, 50,
2249. (b) Coffinier, D.; El Kaïm, L.; Grimaud, L. Synlett 2008,
1133. (c) Demir, A. S.; Reis, Ö.; Esiringü, I.; Reis, B.; Baris, S. Tet-
rahedron 2007, 63, 160. (d) Demir, A. S.; Eymur, S. J. Org. Chem.
2007, 72, 8527. (e) El Kaïm, L.; Gaultier, L.; Grimaud, L.; Dos
Santos, A. Synlett 2005, 2335. (f) Pachamuthu, K.; Schmidt, R. R.
Chem. Commun. 2004, 1078. (g) Ruel, R.; Bouvier, J.-P.; Young, R.
N. J. Org. Chem. 1995, 60, 5209. (h) Kuroboshi, M.; Ishihara, T.;
Ando, T. J. Fluorine Chem. 1988, 39, 293. (i) Bausch, C. C.;
Johnson, J. S. Adv. Synth. Catal. 2005, 347, 1207. (j) Demir, A. S.;
Reis, Ö.; İğdir, A. Ç.; Esiringü, İ.; Eymur, S. J. Org. Chem. 2005, 70,
10584. (k) Demir, A. S.; Esiringü, I.; Göllü, M.; Reis, Ö. J. Org.
Chem. 2009, 74, 2197. (l) Demir, A. S.; Reis, B.; Reis, Ö.; Eymür,
S.; Göllü, M.; Tural, S.; Saglam, G. J. Org. Chem. 2007, 72, 7439.
(m) Corbett, M.; Uraguchi, D.; Ooi, T.; Johnson, J. S. Angew.
Chem. Int. Ed. 2012, 51, 4685. (n) Horwitz, M. A.; Tanaka, N.;
Yokosaka, T.; Uraguchi, D.; Johnson, J. S.; Ooi, T. Chem. Sci. 2015,
6, 6086. (o) Horwitz, M. A.; Zavesky, B. P.; Martinez-Alvarado, J.
I.; Johnson, J. S. Org. Lett. 2016, 18, 36.
(11) (a) Kondoh, A.; Terada, M. Org. Lett. 2013, 15, 4568. (b) Kondoh,
A.; Aoki, T.; Terada, M. Org. Lett. 2014, 16, 3528. (c) Kondoh, A.;
Terada, M. Org. Chem. Front. 2015, 2, 801. (d) Kondoh, A.; Aoki,
T.; Terada, M. Chem. Eur. J. 2015, 21, 12577.
(12) For palladium-catalyzed cross-coupling reactions of benzylic
phosphates, see: (a) McLaughlin, M. Org. Lett. 2005, 7, 4875.
(b) Zhang, P.; Xu, J.; Gao, Y.; Li, X.; Tang, G.; Zhao, Y. Synlett
2014, 25, 2928. (c) Shang, R.; Huang, Z.; Xiao, X.; Lu, X.; Fu, Y.;
Liu, L. Adv. Synth. Catal. 2012, 354, 2465. (d) Trost, B. M.;
Czabaniuk, L. C. Chem. Eur. J. 2013, 19, 15210.
(16) Typical Procedure for the Synthesis of 3-Aryloxindoles 4
The reaction of 2a and 3e is representative (Table 1, entry 18).
Pd2(dba)3 (6.8 mg, 7.5 μmol) and XPhos (14 mg, 30 μmol) were
dissolved in toluene (0.60 mL), and the solution was stirred for
15 min. Compound 2a (0.14 g, 0.30 mmol) in toluene (2.4 mL),
NaHCO3 (50 mg, 0.60 mmol), 3e (0.11 g, 0.45 mmol), and H2O
(1.5 mL) were sequentially added, and the resulting mixture
was then warmed to 60 °C. After stirred for 7 h, the reaction was
quenched with sat. aq NH4Cl, and the product was extracted
with EtOAc. The combined organic layer was dried over Na2SO4
and evaporated. The crude mixture was purified by column
chromatography (hexane–EtOAc, 4:1) to afford 4aa (72 mg, 0.24
mmol, 80%) as a white solid.
Compound 4aa: 1H NMR (400 MHz, CDCl3): δ = 4.74 (s, 1 H),
4.90 (d, J = 15.6 Hz, 1 H), 5.00 (d, J = 15.6 Hz, 1 H), 6.79 (d, J = 7.8
Hz, 1 H), 7.02 (dd, J = 7.2, 7.2 Hz, 1 H), 7.14–7.18 (m, 1 H), 7.18–
7.24 (m, 3 H), 7.24–7.37 (m, 8 H). 13C NMR (100 MHz, CDCl3):
δ = 43.9, 52.0, 109.2, 122.7, 125.1, 127.3, 127.59, 127.62, 128.3,
128.4, 128.8, 128.89, 128.92, 135.9, 136.7, 143.6, 176.1.
(17) The exploratory investigation for reaction conditions are sum-
marized in the Supporting Information.
(18) With these substrates 2, the reaction without NaHCO3 provided
almost the same or slightly better yields than those obtained
with NaHCO3.
(19) Procedure for the One-Pot Synthesis of 3-Aryloxindoles
To a solution of 1a (50 mg, 0.21 mmol) and diphenyl phosphite
(45 μL, 0.23 mmol) in toluene (0.42 mL) was added i-Pr2NEt (3.6
μL, 21 μmol). The resulting mixture was then stirred at room
temperature for 10 min. A stock solution of Pd2(dba)3 (4.8 mg,
5.3 μmol) and XPhos (10 mg, 21 μmol) in toluene (0.42 mL),
toluene (3.4 mL), NaHCO3 (35 mg, 0.42 mmol), 3e (77 mg, 0.31
(13) Typical Procedure for the Synthesis of Oxindole Derivatives 2
Synthesis of 2a is representative. To a solution of 1a (1.0 g, 4.3
mmol) and diphenyl phosphite (0.92 mL, 4.8 mmol) in toluene
© Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, A–F