Journal of Medicinal Chemistry
Article
Arrowsmith, C. H.; Brown, P. J.; Simeonov, A.; Vedadi, M.; Jin, J.
Discovery of a 2,4-diamino-7-aminoalkoxyquinazoline as a potent and
selective inhibitor of histone lysine methyltransferase G9a. J. Med.
Chem. 2009, 52, 7950−7953. (f) Kubicek, S.; O'Sullivan, R. J.; August,
E. M.; Hickey, E. R.; Zhang, Q.; Teodoro, M. L.; Rea, S.; Mechtler, K.;
Kowalski, J. A.; Homon, C. A.; Kelly, T. A.; Jenuwein, T. Reversal of
H3K9me2 by a small-molecule inhibitor for the G9a histone
methyltransferase. Mol. Cell 2007, 25, 473−481. (g) Allan, M.;
Manku, S.; Therrien, E.; Nguyen, N.; Styhler, S.; Robert, M. F.;
Goulet, A. C.; Petschner, A. J.; Rahil, G.; Robert Macleod, A.; Deziel,
R.; Besterman, J. M.; Nguyen, H.; Wahhab, A. N-Benzyl-1-heteroaryl-
3-(trifluoromethyl)-1H-pyrazole-5-carboxamides as inhibitors of co-
activator associated arginine methyltransferase 1 (CARM1). Bioorg.
Med. Chem. Lett. 2009, 19, 1218−1223. (h) Huynh, T.; Chen, Z.;
Pang, S.; Geng, J.; Bandiera, T.; Bindi, S.; Vianello, P.; Roletto, F.;
Thieffine, S.; Galvani, A.; Vaccaro, W.; Poss, M. A.; Trainor, G. L.;
Lorenzi, M. V.; Gottardis, M.; Jayaraman, L.; Purandare, A. V.
Optimization of pyrazole inhibitors of Coactivator Associated Arginine
Methyltransferase 1 (CARM1). Bioorg. Med. Chem. Lett. 2009, 19,
2924−2927. (i) Purandare, A. V.; Chen, Z.; Huynh, T.; Pang, S.; Geng,
J.; Vaccaro, W.; Poss, M. A.; Oconnell, J.; Nowak, K.; Jayaraman, L.
Pyrazole inhibitors of coactivator associated arginine methyltransferase
1 (CARM1). Bioorg. Med. Chem. Lett. 2008, 18, 4438−4441.
(9) Feng, Q.; Wang, H.; Ng, H. H.; Erdjument-Bromage, H.; Tempst,
P.; Struhl, K.; Zhang, Y. Methylation of H3-lysine 79 is mediated by a
new family of HMTases without a SET domain. Curr. Biol. 2002, 12,
1052−1058.
ACKNOWLEDGMENTS
■
This work was supported by a grant (RP110050) from the
Cancer Prevention and Research Institute of Texas (CPRIT) to
Y.S. J.L.A. was supported by a training fellowship from the Keck
Center of the Gulf Coast Consortia, on the Pharmacological
Sciences Training Program, National Institute of General
Medical Sciences (NIGMS), T32GM089657.
ABBREVIATIONS USED
■
HMT, histone methyltransfers; H3K79, histone3-lysine79;
ITC, isothermal titration calorimetry; MLL, mixed lineage
leukemia; SAM, S-adenosyl-L-methionine; SAH, S-adenosyl-L-
homocysteine; SAR, structure−activity relationship
REFERENCES
■
(1) For a recent review, see Kouzarides, T. Chromatin modifications
and their function. Cell 2007, 128, 693−705.
(2) Cheng, X.; Collins, R. E.; Zhang, X. Structural and sequence
motifs of protein (histone) methylation enzymes. Annu. Rev. Biophys.
Biomol. Struct. 2005, 34, 267−294.
(3) Schubert, H. L.; Blumenthal, R. M.; Cheng, X. Many paths to
methyltransfer: a chronicle of convergence. Trends Biochem. Sci. 2003,
28, 329−335.
(4) Jones, P. A.; Baylin, S. B. The epigenomics of cancer. Cell 2007,
128, 683−692.
(5) Copeland, R. A.; Solomon, M. E.; Richon, V. M. Protein
methyltransferases as a target class for drug discovery. Nat. Rev. Drug
Discovery 2009, 8, 724−732.
(6) For reviews of HMT inhibitors, see ref 5 and Cole, P. A.
Chemical probes for histone-modifying enzymes. Nat. Chem. Biol.
2008, 4, 590−597.
(7) For DOT1L inhibitors, see (a) Daigle, S. R.; Olhava, E. J.;
Therkelsen, C. A.; Majer, C. R.; Sneeringer, C. J.; Song, J.; Johnston, L.
D.; Scott, M. P.; Smith, J. J.; Xiao, Y.; Jin, L.; Kuntz, K. W.; Chesworth,
R.; Moyer, M. P.; Bernt, K. M.; Tseng, J. C.; Kung, A. L.; Armstrong, S.
A.; Copeland, R. A.; Richon, V. M.; Pollock, R. M. Selective killing of
mixed lineage leukemia cells by a potent small-molecule DOT1L
inhibitor. Cancer Cell 2011, 20, 53−65. (b) Yao, Y.; Chen, P.; Diao, J.;
Cheng, G.; Deng, L.; Anglin, J. L.; Prasad, B. V.; Song, Y. Selective
inhibitors of histone methyltransferase DOT1L: design, synthesis, and
crystallographic studies. J. Am. Chem. Soc. 2011, 133, 16746−16749.
(8) For inhibitors of other HMTs, see (a) Greiner, D.; Bonaldi, T.;
Eskeland, R.; Roemer, E.; Imhof, A. Identification of a specific
inhibitor of the histone methyltransferase SU(VAR)3−9. Nat. Chem.
Biol. 2005, 1, 143−145. (b) Liu, F.; Barsyte-Lovejoy, D.; Allali-
Hassani, A.; He, Y.; Herold, J. M.; Chen, X.; Yates, C. M.; Frye, S. V.;
Brown, P. J.; Huang, J.; Vedadi, M.; Arrowsmith, C. H.; Jin, J.
Optimization of cellular activity of G9a inhibitors 7-aminoalkoxy-
quinazolines. J. Med. Chem. 2011, 54, 6139−6150. (c) Vedadi, M.;
Barsyte-Lovejoy, D.; Liu, F.; Rival-Gervier, S.; Allali-Hassani, A.;
Labrie, V.; Wigle, T. J.; Dimaggio, P. A.; Wasney, G. A.; Siarheyeva, A.;
Dong, A.; Tempel, W.; Wang, S. C.; Chen, X.; Chau, I.; Mangano, T.
J.; Huang, X. P.; Simpson, C. D.; Pattenden, S. G.; Norris, J. L.; Kireev,
D. B.; Tripathy, A.; Edwards, A.; Roth, B. L.; Janzen, W. P.; Garcia, B.
A.; Petronis, A.; Ellis, J.; Brown, P. J.; Frye, S. V.; Arrowsmith, C. H.;
Jin, J. A chemical probe selectively inhibits G9a and GLP
methyltransferase activity in cells. Nat. Chem. Biol. 2011, 7, 566−
574. (d) Liu, F.; Chen, X.; Allali-Hassani, A.; Quinn, A. M.; Wigle, T.
J.; Wasney, G. A.; Dong, A.; Senisterra, G.; Chau, I.; Siarheyeva, A.;
Norris, J. L.; Kireev, D. B.; Jadhav, A.; Herold, J. M.; Janzen, W. P.;
Arrowsmith, C. H.; Frye, S. V.; Brown, P. J.; Simeonov, A.; Vedadi, M.;
Jin, J. Protein lysine methyltransferase G9a inhibitors: Design,
synthesis, and structure activity relationships of 2,4-diamino-7-
aminoalkoxy-quinazolines. J. Med. Chem. 2010, 53, 5844−5857.
(e) Liu, F.; Chen, X.; Allali-Hassani, A.; Quinn, A. M.; Wasney, G.
A.; Dong, A.; Barsyte, D.; Kozieradzki, I.; Senisterra, G.; Chau, I.;
Siarheyeva, A.; Kireev, D. B.; Jadhav, A.; Herold, J. M.; Frye, S. V.;
(10) Min, J.; Feng, Q.; Li, Z.; Zhang, Y.; Xu, R. M. Structure of the
catalytic domain of human DOT1L, a non-SET domain nucleosomal
histone methyltransferase. Cell 2003, 112, 711−723.
(11) Okada, Y.; Feng, Q.; Lin, Y.; Jiang, Q.; Li, Y.; Coffield, V. M.;
Su, L.; Xu, G.; Zhang, Y. hDOT1L links histone methylation to
leukemogenesis. Cell 2005, 121, 167−178.
(12) Krivtsov, A. V.; Armstrong, S. A. MLL translocations, histone
modifications and leukaemia stem-cell development. Nat. Rev. Cancer
2007, 7, 823−833.
(13) Krivtsov, A. V.; Feng, Z.; Lemieux, M. E.; Faber, J.; Vempati, S.;
Sinha, A. U.; Xia, X.; Jesneck, J.; Bracken, A. P.; Silverman, L. B.;
Kutok, J. L.; Kung, A. L.; Armstrong, S. A. H3K79 methylation profiles
define murine and human MLL-AF4 leukemias. Cancer Cell 2008, 14,
355−368.
(14) Hilden, J. M.; Dinndorf, P. A.; Meerbaum, S. O.; Sather, H.;
Villaluna, D.; Heerema, N. A.; McGlennen, R.; Smith, F. O.; Woods,
W. G.; Salzer, W. L.; Johnstone, H. S.; Dreyer, Z.; Reaman, G. H.
Analysis of prognostic factors of acute lymphoblastic leukemia in
infants: report on CCG 1953 from the Children's Oncology Group.
Blood 2006, 108, 441−451.
(15) Coulombe, R. A.; Sharma, R. P.; Huggins, J. W.
Pharmacokinetics of the antiviral agent 3-deazaneplanocin A. Eur. J.
Drug Metab. Pharmacokinet. 1995, 20, 197−202.
(16) Obara, T.; Shuto, S.; Saito, Y.; Snoech, R.; Andrei, G.; Balzarini,
J.; De Clercq, E.; Matsuda, A. New Neplanocin analogues. 7. Synthesis
and antiviral activity of 2-halo derivatives of Neplanocin A. J. Med.
Chem. 1996, 39, 3847−3852.
(17) Glide, version 5.5; Schrodinger, LLC: New York, NY, 2010.
̈
(18) Schrodinger Suite, version 2010; Schrodinger, LLC: New York,
NY, 2010.
̈
̈
(19) Richon, V. M.; Johnston, D.; Sneeringer, C. J.; Jin, L.; Majer, C.
R.; Elliston, K.; Jerva, L. F.; Scott, M. P.; Copeland, R. A.
Chemogenetic analysis of human protein methyltransferases. Chem.
Biol. Drug Des. 2011, 78, 199−210.
(20) Koppisch, A. T.; Fox, D. T.; Blagg, B. S.; Poulter, C. D. E. coli
MEP synthase: steady-state kinetic analysis and substrate binding.
Biochemistry 2002, 41, 236−243.
(21) Deng, L.; Endo, K.; Kato, M.; Cheng, G.; Yajima, S.; Song, Y.
Structures of 1-deoxy-D-xylulose-5-phosphate reductoisomerase/lip-
ophilic phosphonate complexes. ACS Med. Chem. Lett. 2011, 2, 165−
170.
(22) Maestro, version 9.1; Schrodinger, LLC: New York, NY, 2010.
̈
8073
dx.doi.org/10.1021/jm300917h | J. Med. Chem. 2012, 55, 8066−8074