Organic Letters
Letter
organophosphorus-catalyzed Appel and Wittig reactions. Green Chem.
2013, 15, 1255−1263.
((Trifluoromethyl)thio)-2H-chromene and 4-((Trifluoromethyl)-
thio)-1,2-dihydroquinoline Derivatives. Org. Lett. 2016, 18, 1514−
1517. (h) Yavari, I.; Esmaili, A. A.; Ramazani, A.; BolbolAmiri, A. R. A
facile route to functionalized 1-arylsulfonyl-1,2-dihydroquinolines.
Monatsh. Chem. 1997, 128, 927−931. (i) Yavari, I.; Ramazani, A.;
Esmaili, A. A. One-step synthesis of dialkyl 1,2-dihydroquinoline-2,3-
dicarboxylates. A vinyltriphenylphosphonium salt mediated intra-
molecular Wittig reaction. J. Chem. Res., Synop. 1997, 208−209.
(10) (a) Shi, Y.; Pierce, J. G. Stereocontrolled Synthesis of
(+)-Plagiogyrin A. Org. Lett. 2016, 18, 5308−5311. (b) Lisiecki, K.;
Czarnocki, Z. Flow Photochemistry as a Tool for the Total Synthesis
of (+)-Epigalcatin. Org. Lett. 2018, 20, 605−607. (c) Snyder, S. A.;
Sherwood, T. C.; Ross, A. G. Total Syntheses of Dalesconol A and B.
Angew. Chem., Int. Ed. 2010, 49, 5146−5150.
(7) For representative examples, see: (a) O’Brien, C. J.; Tellez, J. L.;
Nixon, Z. S.; Kang, L. J.; Carter, A. L.; Kunkel, S. R.; Przeworski, K.
C.; Chass, G. A. Recycling the Waste: The Development of a Catalytic
Wittig Reaction. Angew. Chem., Int. Ed. 2009, 48, 6836−6839.
(b) Werner, T.; Hoffmann, M.; Deshmukh, S. First Microwave-
Assisted Catalytic Wittig Reaction. Eur. J. Org. Chem. 2014, 2014,
6873−6876. (c) Schirmer, M.-L.; Adomeit, S.; Werner, T. First Base-
Free Catalytic Wittig Reaction. Org. Lett. 2015, 17, 3078−3081.
(d) van Kalkeren, H. A.; Bruins, J. J.; Rutjes, F. P. J. T.; van Delft, F. L.
Organophosphorus-Catalysed Staudinger Reduction. Adv. Synth.
Catal. 2012, 354, 1417−1421. (e) Kosal, A. D.; Wilson, E. E.;
Ashfeld, B. L. Phosphine-Based Redox Catalysis in the Direct
Traceless Staudinger Ligation of Carboxylic Acids and Azides.
Angew. Chem., Int. Ed. 2012, 51, 12036−12040. (f) van Kalkeren,
H. A.; Leenders, S. H. A. M.; Hommersom, C. R. A.; Rutjes, F. P. J.
T.; van Delft, F. L. In Situ Phosphine Oxide Reduction: A Catalytic
Appel Reaction. Chem. - Eur. J. 2011, 17, 11290−11295. (g) Harris, J.
R.; Haynes, M. T., II; Thomas, A. M.; Woerpel, K. A. Phosphine-
Catalyzed Reductions of Alkyl Silyl Peroxides by Titanium Hydride
Reducing Agents: Development of the Method and Mechanistic
Investigations. J. Org. Chem. 2010, 75, 5083−5091. (h) Lenstra, D. C.;
Rutjes, F. P. J. T.; Mecinovic, J. Triphenylphosphine-catalysed amide
bond formation between carboxylic acids and amines. Chem. Commun.
2014, 50, 5763−5766. (i) Reichl, K. D.; Dunn, N. L.; Fastuca, N. J.;
Radosevich, A. T. Biphilic Organophosphorus Catalysis: Regioselec-
tive Reductive Transposition of Allylic Bromides via P-III/P-V Redox
Cycling. J. Am. Chem. Soc. 2015, 137, 5292−5295. (j) Fourmy, K.;
Voituriez, A. Catalytic Cyclization Reactions of Huisgen Zwitterion
with α-Ketoesters by in Situ Chemoselective Phosphine Oxide
Reduction. Org. Lett. 2015, 17, 1537−1540. (k) Zhang, K.; Cai, L. C.;
Yang, Z. Y.; Houk, K. N.; Kwon, O. Bridged [2.2.1] bicyclic
phosphine oxide facilitates catalytic γ-umpolung addition-Wittig
olefination. Chem. Sci. 2018, 9, 1867−1872.
(11) (a) Ding, H.; Ma, C.; Yang, Y.; Wang, Y. Unexpected Reaction
of Dimethyl Acetylenedicarboxylate with in Situ Generated
Arylketenes Catalyzed by 1-Methylimidazole. Org. Lett. 2005, 7,
2125−2127. (b) Kapferer, T.; Bruckner, R. Asymmetric Dihydrox-
̈
ylation of β,γ-Unsaturated Carboxylic Esters with Trisubstituted C =
C Bonds − Enantioselective Syntheses of Trisubstituted γ-
Butyrolactones. Eur. J. Org. Chem. 2006, 2006, 2119−2133.
(c) Ref 7c.
(12) Li, Y.; Lu, L.-Q.; Das, S.; Pisiewicz, S.; Junge, K.; Beller, M.
Highly Chemoselective Metal-Free Reduction of Phosphine Oxides to
Phosphines. J. Am. Chem. Soc. 2012, 134, 18325−18329.
(13) For additional control experiments, see the Supporting
(14) (a) Yavari, I.; Alizadeh, A.; Anary-Abbasinejad, M. Efficient
synthesis of functionalized 2,5-dihydro-1,2-oxaphospholes. Tetrahe-
dron Lett. 2003, 44, 2877−2879. (b) Yavari, I.; Anary-Abbasinejad,
M.; Hossaini, Z. Reaction between naphthols and dimethyl
acetylenedicarboxylate in the presence of phosphites. Synthesis of
stable oxa-2 lambda(5)-phosphaphenanthrenes, and benzochromene
derivatives. Org. Biomol. Chem. 2003, 1, 560−564. (c) Yavari, I.;
Hossaini, Z.; Sabbaghan, M.; Ghazanfarpour-Darjani, M. Efficient
synthesis of functionalized spiro-2,5-dihydro-1,2-lambda(5)-oxa-
phospholes. Tetrahedron 2007, 63, 9423−9428. (d) Esmaeili, A. A.;
Amini, S.; Bodaghi, A. A novel synthesis of spiro-2,5-dihydro-1,2-
lambda(5)-oxaphospholes using a three-component reaction. Synlett
2007, 2007, 1452−1454. (e) Charati, F. R.; Hossaini, Z.; Hosseini-
Tabatabaei, M. R. A Simple Synthesis Of Oxaphospholes. Phosphorus,
Sulfur Silicon Relat. Elem. 2011, 186, 1443−1448. (f) Fan, H. F.;
Wang, X. W.; Zhao, J. W.; Li, X. J.; Gao, J. M.; Zhu, S. Z. Synthesis of
5-(Trifluoromethyl)-2,5-dihydro-1,2 lambda(5)-oxaphospholes by a
One-Pot Three-Component Reaction. Synthesis 2012, 44, 3315−
3320.
(15) (a) Huang, Z.; Bao, Y.; Zhang, Y.; Yang, F.; Lu, T.; Zhou, Q.
Hydroxy-Assisted Regio- and Stereoselective Synthesis of Function-
alized 4-Methylenepyrrolidine Derivatives via Phosphine-Catalyzed [3
+ 2] Cycloaddition of Allenoates with o-Hydroxyaryl Azomethine
Ylides. J. Org. Chem. 2017, 82, 12726−12734. For general reviews,
see: (b) Methot, J. L.; Roush, W. R. Nucleophilic phosphine
organocatalysis. Adv. Synth. Catal. 2004, 346, 1035−1050. (c) Fan, Y.
C.; Kwon, O. Advances in nucleophilic phosphine catalysis of alkenes,
allenes, alkynes, and MBHADs. Chem. Commun. 2013, 49, 11588−
11619. (d) Xiao, Y.; Sun, Z.; Guo, H.; Kwon, O. Chiral phosphines in
nucleophilic organocatalysis. Beilstein J. Org. Chem. 2014, 10, 2089−
2121. (e) Wei, Y.; Shi, M. Lu’s [3 + 2] cycloaddition of allenes with
electrophiles: discovery, development and synthetic application. Org.
Chem. Front. 2017, 4, 1876−1890.
(8) (a) Saleh, N.; Voituriez, A. Synthesis of 9H-Pyrrolo[1,2-a]indole
and 3H-Pyrrolizine Derivatives via a Phosphine-Catalyzed Umpolung
Addition/Intramolecular Wittig Reaction. J. Org. Chem. 2016, 81,
4371−4377. (b) Saleh, N.; Blanchard, F.; Voituriez, A. Synthesis of
Nitrogen-Containing Heterocycles and Cyclopentenone Derivatives
via Phosphine-Catalyzed Michael Addition/Intramolecular Wittig
Reaction. Adv. Synth. Catal. 2017, 359, 2304−2315.
(9) Biological activities of 1,2-DHQs: (a) Takahashi, H.; Bekkali, Y.;
Capolino, A. J.; Gilmore, T.; Goldrick, S. E.; Kaplita, P. V.; Liu, L.;
Nelson, R. M.; Terenzio, D.; Wang, J.; Zuvela-Jelaska, L.; Proudfoot,
J.; Nabozny, G.; Thomson, D. Discovery and SAR study of novel
dihydroquinoline-containing glucocorticoid receptor agonists. Bioorg.
Med. Chem. Lett. 2007, 17, 5091−5095. (b) Rabelo, V. W.; Sampaio,
T. F.; Duarte, L. D.; Lopes, D. H. B.; Abreu, P. A. Structure-activity
relationship of a series of 1,2-dihydroquinoline analogues and binding
mode with Vibrio cholerae dihydrofolate reductase. Med. Chem. Res.
2016, 25, 1524−1537. Synthetic methods: (c) Purkait, N.; Blechert,
S. Synthesis of Bi- and Tricyclic 1,2-Dihydroquinoline Derivatives
from Arylamines and Alkynes by a Consecutive Zinc-Ammonium Salt
Catalysis. Adv. Synth. Catal. 2012, 354, 2079−2083. (d) Yi, C. S.;
Yun, S. Y.; Guzei, I. A. Catalytic Synthesis of Tricyclic Quinoline
Derivatives from the Regioselective Hydroamination and C−H Bond
Activation Reaction of Benzocyclic Amines and Alkynes. J. Am. Chem.
Soc. 2005, 127, 5782−5783. (e) Luo, Y.; Li, Z.; Li, C.-J. A Silver-
Catalyzed Domino Route toward 1,2-Dihydroquinoline Derivatives
from Simple Anilines and Alkynes. Org. Lett. 2005, 7, 2675−2678.
(f) Liu, X.-Y.; Ding, P.; Huang, J.-S.; Che, C.-M. Synthesis of
Substituted 1,2-Dihydroquinolines and Quinolines from Aromatic
Amines and Alkynes by Gold(I)-Catalyzed Tandem Hydroamina-
tion−Hydroarylation under Microwave-Assisted Conditions. Org.
Lett. 2007, 9, 2645−2648. (g) Qiu, Y.-F.; Song, X.-R.; Li, M.; Zhu,
X.-Y.; Wang, A.-Q.; Yang, F.; Han, Y.-P.; Zhang, H.-R.; Jin, D.-P.; Li,
Y.-X.; Liang, Y.-M. BF3·OEt2-AgSCF3 Mediated Trifluoromethylth-
iolation/Cascade Cyclization of Propynols: Synthesis of 4-
(16) Some amounts of the cyclic 2H-chromene derivative were also
formed (15% yield). See: (a) Yavari, I.; Ramazani, A. Vinyl-
triphenylphosphonium salt mediated preparation of dialkyl 2H-1-
benzopyran-2,3-dicarboxylates. An efficient one-pot synthesis of 2H-
chromene derivatives. J. Chem. Res. S 1996, 382−383. (b) With the
use of benzaldehyde or 4-(trifluoromethyl)benzaldehyde as substrates,
the desired olefinic products were obtained in low yields (<15%).
E
Org. Lett. XXXX, XXX, XXX−XXX