are potential nontoxic antioxidant, membrane stabilizing
agents.5 Few synthetic routes are available for indenothio-
phenes and indenoindoles.2,4,6 To the best of our knowledge,
there are only a few reports of indeno[1,2-b]thiophenes and
indeno[1,2-b]indoles having varied substitution at the 8/10
positions.2,4a,6c This provides an opportunity to develop new
and efficient methods for selective design of heterocycle-fused
indenes. In this regard, a tandem catalysis approach appears
to be synthetically attractive.7
Keeping this in view we wished to construct the inde-
nothiophene/indenoindole core 4 from corresponding
aldehyde 3 and nucleophiles (such as arene, heteroarene,
1,3-diketo, alcohol, amine, and thiol) via a tandem ring-
closing route (Scheme 1). Precursor 3 could be synthesized
in a straightforward manner by Suzuki coupling8 between
1 and 2. The Lewis acidic activation of aldehyde 3 accom-
panied by tandem ring closing would furnish 4.
Scheme 2. Preparation of PdÀSn Heterobimetallics
(for details please see Supporting Information), PdCl-
(PPh3)2SnCl3 C2 was selected as the catalyst. The Suzuki
coupling between various aryl and heteroaryl substituted
boronic acids 2 with bromo derivatives 1 afforded the
desiredmotif3 inmoderate toexcellent yields (Figure1;for
details please see Supporting Information).
To test the tandem ring-closing reaction of 3 in the
presence of a nucleophile, the model reaction between
2-(thiophen-3-yl)benzaldehyde 3a and 2-methylthiophene
was studied, which gave rise to 8-(5-methylthiophen-2-yl)-
8H-indeno[2,1-b]thiophene 4a (Table 1).
Scheme 1. Retrosynthesis
Our continuing effort to develop bimetallic catalysis for
carbonÀcarbon and carbonÀheteroatom bond formation9
encouraged us to test the efficacy of a heterobimetallic
‘PdÀSn’ catalyst in mediating both the Suzuki and ring-
closing reactions. In view of the importance of ligands in
catalysis,10 we synthesized discrete heterobimetallic
‘PdÀSn’ complexes with diene and phosphine ligands via
the insertion reaction of SnCl2 across PdCl2(MeCN)2
(Scheme 2).11
Figure 1. Construction of motif 3 via Suzuki coupling.
Table 1. Screening of Catalysts for Cyclizationa
For the synthesis of arylaldehyde 3 via Suzuki coupling,
the model reaction between 4-bromobenzaldehyde and
phenylboronic acid was chosen. Based on TOF values
(5) (a) Graupner, P. R.; Mabon, M. F.; Ninan, A.; Sainsbury, M.;
€
Shertzer, H. G. Tetrahedron Lett. 1995, 36, 5827. (b) Talaz, O.; Gulc-in,
:
€
I.; Goksu, S.; Saracoglu, N. Bioorg. Med. Chem. 2009, 17, 6583.
(6) For few selected references: (a) Kashulin, I. A.; Nifant’ev, I. E.
J. Org. Chem. 2004, 69, 5476. (b) Chernyak, N.; Tilly, D.; Li, Z.;
Gevorgyan, V. Chem. Commun. 2010, 46, 150. (c) Fu, T. L.; Wang,
I. J. Dyes Pigm. 2008, 76, 590. (d) Barolo, S. M.; Lukach, A. E.; Rossi,
R. A. J. Org. Chem. 2003, 68, 2807. (e) Li, G.; Wang, E.; Chen, H.; Li, H.;
Liu, Y.; Wang, P. G. Tetrahedron 2008, 64, 9033. (f) Jewett, J. C.; Sletten,
E. M.; Bertozzi, C. R. J. Am. Chem. Soc. 2010, 132, 3688. (g) MacDowell,
D. W. H.; Patrick, T. B. J. Org. Chem. 1967, 32, 2441.
(7) (a) Wasilke, J. C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C. Chem.
Rev. 2005, 105, 1001. (b) Tietze, L. F. Chem. Rev. 1996, 96, 115.
(8) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. (b)
Nicolaou, K. C.; Bulger, P. G; Sarlah., D. Angew. Chem., Int. Ed.
2005, 44, 4442.
(9) (a) Choudhury, J.; Podder, S.; Roy, S. J. Am. Chem. Soc. 2005,
127, 6162. (c) Chatterjee, P. N.; Roy, S. J. Org. Chem. 2010, 75, 4413. (d)
Podder, S.; Choudhury, J.; Roy, S. J. Org. Chem. 2007, 72, 3129. (e)
Podder, S.; Choudhury, J.; Roy, U. K.; Roy, S. J. Org. Chem. 2007, 72,
3100. (f) Maity, A. K.; Roy, S. J. Org. Chem. 2012, 77, 2935.
(10) (a) Weng, Z.; Teo, S.; Hor, T. S. A. Acc. Chem. Res. 2007, 40,
676. (b) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47,
6338.
additive
(mol %)
time
(h)
yieldb
(%)
entry
catalyst (mol %)
1
2
3
4
5
6
7
PdCl(COD)SnCl3 (10)
PdCl(PPh3)2SnCl3 (05)
PdCl(COD)SnCl3 (05)
PdCl2(COD) (05)
PdCl2 (05)
À
16
10
6
7
0
AgPF6 (05)
AgPF6 (05)
AgPF6 (05)
AgPF6 (05)
AgPF6 (10)
AgPF6 (10)
70
0
12
12
12
16
0
SnCl2 (10)
0
À
0
a A mixture of aldehyde (0.25 mmol), 2-methylthiophene (0.75 mmol),
catalyst, and AgPF6 in 2 mL of dry ClCH2CH2Cl was stirred at 85 °C
for an appropriate time. b 1H NMR yield using triphenylmethane as an
external standard.
(11) (a) Das, D.; Pratihar, S.; Roy, U. K.; Mal, D.; Roy, S. Org.
ꢁ
Biomol. Chem. 2012, 10, 4537. (b) Noskowska, M.; Sliwinska, E.;
Duczmal, W. Transition Met. Chem. 2003, 28, 756.
Org. Lett., Vol. 14, No. 18, 2012
4871