ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Gold-Catalyzed Oxidative Rearrangement
of Homopropargylic Ether via Oxonium Ylide
Mei Xu, Tian-Tian Ren, and Chuan-Ying Li*
Department of Chemistry, Zhejiang Sci-Tech University, Xiasha West Higher Education
District, Hangzhou 310018, China
Received August 12, 2012
ABSTRACT
Synthetically useful R,β-unsaturated carbonyl compounds were obtained from gold-catalyzed oxidative rearrangement of homopropargylic ether
under mild reaction conditions. Gold carbenoid and oxonium ylide are proposed as key intermediates.
Gold-catalyzed reactions have intensively been investi-
gated in the past decade.1 Numerous new transformations
based on the π-acidity and electron-donor property of gold
catalysts have been developed and applied in multistep
syntheses. In 2007, Toste and co-workers2a and Zhang and
co-workers2b independently reported that alkyne with a
tethered sulfoxide could be used asprecursor of R-oxo gold
carbenoid. This method is promising because it offers a
convenient and benign alternative to generate metal car-
bene, which is tranditionally obtained from the diazo
compound.2,3 Intermolecular oxidation of alkynes was sub-
sequently realizedby using pyridineN-oxide, and the metal
carbenoid or gold-stabilized carbocation can be trapped
€
(1) For selected reviews, see: (a) Furstner, A.; Davies, P. W. Angew.
Chem., Int. Ed. 2007, 46, 3410. (b) Hashmi, A. S. K. Chem. Rev. 2007,
107, 3180. (c) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239. (d)
ꢀ
ꢀ
Arcadi, A. Chem. Rev. 2008, 108, 3266. (e) Jimenez- Nunez, E.;
Echavarren, A. M. Chem. Rev. 2008, 108, 3326. (f) Gorin, D. J.; Sherry,
B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. (g) Hashmi, A. S. K.;
Rudolph, M. Chem. Soc. Rev. 2008, 37, 1766. (h) Michelet, V.; Toullec,
^
€
P. Y.; Genet, J. P. Angew. Chem., Int. Ed. 2008, 47, 4268. (i) Furstner, A.
Chem. Soc. Rev. 2009, 38, 3208. (j) Hashmi, A. S. K. Angew. Chem., Int.
Ed. 2010, 49, 5232. (k) Aubert, C.; Fensterbank, L.; Garcia, P.; Malacria,
M.; Simonneau, A. Chem. Rev. 2011, 111, 1954. (l) Krause, N.; Winter,
C. Chem. Rev. 2011, 111, 1994.
(4) Gold-catalyzed intramolecular reactions involving gold carbenes
derived from intermolecular oxidation of alkynes: (a) Ye, L.; Cui, L.;
Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258. (b) Ye, L.; He,
W.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 8550. (c) Lu, B.; Li, C.;
Zhang, L. J. Am. Chem. Soc. 2010, 132, 14070. (d) Ye, L.; He, W.;
Zhang., L. Angew. Chem., Int. Ed. 2011, 50, 3236. (e) Vasu, D.; Hung,
H.-H.; Bhunia, S.; Gawade, S. A.; Das, A.; Liu, R.-S. Angew. Chem., Int.
Ed. 2011, 50, 6911. (f) Davies, P. W.; Cremonesi, A.; Dumitrescu, L.
Angew. Chem., Int. Ed. 2011, 50, 8931. (g) Davies, P. W.; Cremonesi, A.;
Martin, N. Chem. Commun. 2011, 47, 379. (h) Qian, D.; Zhang, J. Chem.
Commun. 2011, 47, 11152. (i) Li, C.; Zhang, L. Org. Lett. 2011, 13, 1738.
(j) Qian, D.; Zhang, J. Chem. Commun. 2012, 48, 7082. (k) Wang, Y.; Ji,
K.; Lan, S.; Zhang, L. Angew. Chem., Int. Ed. 2012, 51, 1915. (l) Kramer,
S.; Skrydstrup, T. Angew. Chem., Int. Ed. 2012, 51, 4681.
(5) Selected examples of intermolecular redox reactions of alkynes:
(a) He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 133, 8482.
(b) Mukherjee, A.; Dateer, R. B.; Chaudhuri, R.; Bhunia, S.; Karad,
S. N.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133, 15372. (c) He, W.; Xie, L.;
Xu, Y.; Xiang, J.; Zhang, L. Org. Biomol. Chem. 2012, 10, 3168.
(6) (a) Metal Carbenes in Organc Synthesis; Dorwald, F. Z., Ed.;
Wiley-VCH: New York, 1999. (b) Metal Carbenes in Organc Synthesis;
Dotz, K. H., Ed.; Springer-Verlag: Berlin, 2004. (c) Ye, T.; McKervey, M. A.
Chem. Rev. 1994, 94, 1091. (d) Doyle, M. P.; Forbes, D. C. Chem. Rev.
1998, 98, 911. (e) Lebel, H.; Marcoux, J. F.; Molinaro, C.; Charette,
A. B. Chem. Rev. 2003, 103, 977. (f) Aggarwal, V. K.; Winn, C. L. Acc.
Chem. Res. 2004, 37, 611.
(2) Selected examples of intramolecular redox reactions of alkynes:
(a) Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 4160. (b)
Li, G.; Zhang, L. Angew. Chem., Int. Ed. 2007, 46, 5156. (c) Yeom, H.-S.;
Lee, J.-E.; Shin, S. Angew. Chem., Int. Ed. 2008, 47, 7040. (d) Cui, L.;
Peng, Y.; Zhang, L. J. Am. Chem. Soc. 2009, 131, 8394. (e) Cui, L.;
Zhang, G.; Peng, Y.; Zhang, L. Org. Lett. 2009, 11, 1225. (f) Yeom, H.-
S.; Lee, Y.; Jeong, J.; So, E.; Hwang, S.; Lee, J.-E.; Lee, S. S.; Shin, S.
Angew. Chem., Int. Ed. 2010, 49, 1611. (g) Jadhav, A. M.; Bhunia, S.;
Liao, H.-Y.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133, 1769. (h) Chen, D.;
Song, G.; Jia, A.; Li, X. J. Org. Chem. 2011, 76, 8488. (i) Yeom, H.-S.;
So, E.; Shin, S. Chem.;Eur. J. 2011, 17, 1764. (j) Patel, P.; Ramana,
C. V. Org. Biomol. Chem. 2011, 9, 7327.
(3) Recent review for R-carbonyl gold carbenoids: (a) Xiao, J.; Li, X.
Angew. Chem., Int. Ed. 2011, 50, 7226. For examples using azide as
nucleophiles, see: (b) Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am.
Chem. Soc. 2005, 127, 11260. (c) Wetzel, A.; Gagosz, F. Angew. Chem.,
Int. Ed. 2011, 50, 7354. (d) Lu, B.; Luo, Y.; Liu, L.; Ye, L.; Wang, Y.;
Zhang, L. Angew. Chem., Int. Ed. 2011, 50, 8358. For similar reactions
with different mechanism, see: (e) Cuenca, A. B.; Montserrat, S.;
Hossain, K. M.; Mancha, G.; Lledos, A.; Medio-Simon, M.; Ujaque,
G.; Asensio, G. Org. Lett. 2009, 11, 4906. (f) Li, C.-W.; Pati, K.; Lin,
G.-Y.; Abu Sohel, S. M.; Hung, H.-H.; Liu, R.-S. Angew. Chem., Int. Ed.
2010, 49, 9891. (g) Xu, C.-F.; Xu, M.; Jia, Y.-X.; Li, C.-Y. Org. Lett.
2011, 13, 1556. (h) Noey, E. L.; Luo, Y.; Zhang, L.; Houk, K. N. J. Am.
Chem. Soc. 2012, 134, 1078. (i) Bhunia, S.; Ghorpade, S.; Huple, D. B.;
Liu, R.-S. Angew. Chem., Int. Ed. 2012, 51, 2939.
r
10.1021/ol302238t
XXXX American Chemical Society