Table 2 Interaction energies of top docks (Kcal molꢂ1) and number
of H bonds between I–V and the V3 loop of gp120
interaction of the V3 loop with both the backbone and the
TEL of the aptamers is required. Furthermore, the direct
involvement of nucleobases in the interaction with the V3
loop gives additional stability to the complexes and results in a
better biological activity. Overall, the here reported results
expand our knowledge about anti-HIV G-quadruplexes and
provide the rational basis for the design of novel anti-HIV
aptamers with improved biological activity.
Aptamer
Interactions energy
Number of H bonds
I
ꢂ24.11
ꢂ28.45
ꢂ13.74
ꢂ28.09
ꢂ13.74
8
15
9
11
8
II
III
IV
V
The European Commission through the COST Action
MP0802, the Italian MURST (PRIN 2009), KU Leuven
(PF 10/18 and GOA 10/14) and the FWO are gratefully
acknowledged for the financial support. Dr Luisa Cuorvo is
also acknowledged for technical assistance.
backbone atoms (see Table S1 in ESIw). In particular, in II and
IV, R181 makes multiple interactions with both phosphates
and purine bases (G5 and G6 in II, G6 in IV). Furthermore,
the side chains of R190, T195 and E197 and the nitrogen
backbone atom of T194 of the V3 loop interact with the
oxygen atoms of the TEL, giving additional stability to the
complexes. In the II–V3 loop complex, the side chain of Y193
and the nitrogen backbone atom of Y193, T195 and I198
established additional interactions with the TEL, thereby
resulting in lower interaction energy of this complex with
respect to the other ones (Table 2). It should also be noted
that when the side chain of Y193 is involved in the interaction
(I, II and IV), the resulting complexes are found to have a
better biological activity. Thus, the G5 nucleobase in II
presents additional points for hydrogen bonding with the V3
loop. This is not seen in other bases. Therefore we infer that
the differences in activity can arise from the thermal stability
of the structures. Furthermore, this is also rationalised by the
SPR experiments.
Notes and references
1 P. D. Kwong, R. Wyatt, J. Robinson, R. W. Sweet, J. Sodroski and
W. A. Hendrickson, Nature, 1998, 393, 648–659.
2 R. Wyatt, Science, 1998, 280, 1884–1888.
3 C. C. Huang, Science, 2005, 310, 1025–1028.
4 S. Chou and K. Chin, Trends Biochem. Sci., 2005, 30, 231–234.
5 A. C. Perkins and S. Missailidis, Q. J. Nucl. Med. Mol. Imaging,
2007, 51, 292–296.
6 A. D. Keefe, S. Pai and A. Ellington, Nat. Rev. Drug Discovery,
2010, 9, 537–550.
7 J. Lee, G. Stovall and A. Ellington, Curr. Opin. Chem. Biol., 2006,
10, 282–289.
8 H. Hotoda, K. Momota, H. Furukawa, T. Nakamura,
M. Kaneko, S. Kimura and K. Shimada, Nucleosides Nucleotides,
1994, 13, 1375–1395.
9 J. R. Wyatt, T. A. Vickers, J. L. Roberson, R. W. Buckheit,
T. Klimkait, E. DeBaets, P. W. Davis, B. Rayner, J. L. Imbach
and D. J. Ecker, Proc. Natl. Acad. Sci. U. S. A., 1994, 91,
1356–1360.
10 H. Furukawa, K. Momota, T. Agatsuma, I. Yamamoto,
S. Kimura and K. Shimada, Antisense Nucleic Acid Drug Dev.,
1997, 7, 167–175.
11 M. Koizumi, R. Koga, H. Hotoda, K. Momota, T. Ohmine,
H. Furukawa, T. Agatsuma, T. Nishigaki, K. Abe, T. Kosaka,
S. Tsutsumi, J. Sone, M. Kaneko, S. Kimura and K. Shimada,
Bioorg. Med. Chem., 1997, 5, 2235–2243.
12 H. Hotoda, M. Koizumi, R. Koga, M. Kaneko, K. Momota,
T. Ohmine, H. Furukawa, T. Agatsuma, T. Nishigaki, J. Sone,
S. Tsutsumi, T. Kosaka, K. Abe, S. Kimura and K. Shimada,
J. Med. Chem., 1998, 41, 3655–3663.
13 M. Koizumi, R. Koga, H. Hotoda, T. Ohmine, H. Furukawa,
T. Agatsuma, T. Nishigaki, K. Abe, T. Kosaka, S. Tsutsumi,
J. Sone, M. Kaneko, S. Kimura and K. Shimada, Bioorg. Med.
Chem., 1998, 6, 2469–2475.
14 G. Oliviero, N. Borbone, A. Galeone, M. Varra, G. Piccialli and
L. Mayol, Tetrahedron Lett., 2004, 45, 4869–4872.
15 G. Oliviero, J. Amato, N. Borbone, A. Galeone, M. Varra,
G. Piccialli and L. Mayol, Biopolymers, 2006, 81, 194–201.
16 G. Oliviero, J. Amato, N. Borbone, S. D’Errico, A. Galeone,
L. Mayol, S. Haider, O. Olubiyi, B. Hoorelbeke, J. Balzarini and
G. Piccialli, Chem. Commun., 2010, 46, 8971–8973.
17 S. Paramasivan, I. Rujan and P. H. Bolton, Methods, 2007, 43,
324–331.
18 S. Masiero, R. Trotta, S. Pieraccini, S. De Titio, R. Perone,
A. Randazzo and G. P. Spada, Org. Biomol. Chem., 2010, 8,
2653–2872.
19 J.-L. Mergny, A. De Cian, A. Ghelab, B. Sacca and L. Lacroix,
Nucleic Acids Res., 2005, 33, 81–94.
20 L. M. Walker, M. Huber, K. J. Doores, E. Falkowska, R. Pejchal,
J. P. Julien, S. K. Wang, A. Ramos, P. Y. Chan-Hui, M. Moyle,
J. L. Mitcham, P. W. Hammond, O. A. Olsen, P. Phung, S. Fling,
C. H. Wong, S. Phogat, T. Wrin, M. D. Simek, W. C. Koff,
I. A. Wilson, D. R. Burton and P. Poignard, Nature, 2011, 477,
466–470.
In order to better understand the structural features critical
for the biological activity, we also carried out a molecular
modelling study between the V3 loop and V, a quadruplex
structure lacking marked anti-HIV activity. Our results revealed
that the V3 loop interacts with V by using a different binding
mode (Fig. S7 in ESIw). Differently from what was observed in
the above-described complexes, V interacts with the V3 loop
primarily via the TEL atoms and no atom of nucleobases is
involved. Furthermore, except for R181, different residues of
the V3 loop, such as K182, S183, I184, and I186, are involved in
the interactions (Table S1 in ESIw). A plausible reason for the
different binding mode of V is due to the presence of the
T-tetrad at the 30-terminus. As shown in Fig. S7 in ESIw, when
there is a G-tetrad at the 30-position, the oxygen atoms of
guanines are involved in the interaction with the V3 loop
through the side chains of R181 (and Y193 in the case of IV).
In the V–V3 loop complex the methyl groups of the thymines
are positioned in the groove formed by the phosphodiester
backbone atoms, not allowing the formation of H bonds with
R181 and Y193 of the V3 loop. All together, the structural
evidence suggests that the T-tetrad at the 30-position markedly
affects the biological activity. In accordance with this finding
and with the experimental data, the aptamer II showed the best
docking score and the highest number of hydrogen bonds with
the protein (Table 2).
The anti-HIV activity against HIV-1 and HIV-2 and the
binding properties with HIV gp120 of a small library of
new TEL-aptamers (II–IV) have been reported. Results from
TEL-ODNs V and VI confirmed that the formation of a
quadruplex species by the aptamer is required, but not sufficient
to exert the anti-HIV activity. The docking data suggest that the
21 R. Rohs, S. M. West, A. Sosinsky, P. Liu, R. S. Mann and
B. Honig, Nature, 2009, 461, 1248–1253.
c
9518 Chem. Commun., 2012, 48, 9516–9518
This journal is The Royal Society of Chemistry 2012